A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Additional Further Pure
Sequences and Series
Q7
CAIE Further Paper 2 2020 November — Question 7
Exam Board
CAIE
Module
Further Paper 2 (Further Paper 2)
Year
2020
Session
November
Topic
Sequences and Series
7
Show that \(\sum _ { r = 1 } ^ { n } z ^ { 2 r } = \frac { z ^ { 2 n + 1 } - z } { z - z ^ { - 1 } }\), for \(z \neq 0,1 , - 1\).
By letting \(z = \cos \theta + i \sin \theta\), show that, if \(\sin \theta \neq 0\), $$1 + 2 \sum _ { r = 1 } ^ { n } \cos ( 2 r \theta ) = \frac { \sin ( 2 n + 1 ) \theta } { \sin \theta }$$
This paper
(9 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9