CAIE Further Paper 2 2024 June — Question 5

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2024
SessionJune
TopicArea Under & Between Curves

5
\includegraphics[max width=\textwidth, alt={}, center]{114be67d-a57f-4c36-8f1c-974a2719c1f1-08_663_1152_260_452} The diagram shows the curve with equation \(\mathrm { y } = 2 \mathrm { x } - \mathrm { x } ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } \left( 2 x - x ^ { 2 } \right) d x < U _ { n }\), where $$U _ { n } = \left( 1 + \frac { 1 } { n } \right) \left( \frac { 2 } { 3 } - \frac { 1 } { 6 n } \right) .$$
  2. Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } \left( 2 x - x ^ { 2 } \right) d x\).
  3. Show that \(\lim _ { n \rightarrow \infty } \left( \mathrm { U } _ { n } - \mathrm { L } _ { \mathrm { n } } \right) = 0\).
This paper (1 questions)
View full paper