CAIE Further Paper 2 2024 June — Question 6

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2024
SessionJune
TopicSequences and Series

6
  1. Show that \(\sum _ { r = 1 } ^ { n } z ^ { 4 r } = \frac { z ^ { 4 n + 2 } - z ^ { 2 } } { z ^ { 2 } - z ^ { - 2 } }\), for \(z ^ { 2 } \neq z ^ { - 2 }\).
  2. By letting \(z = \cos \theta + \mathrm { i } \sin \theta\), show that, if \(\sin 2 \theta \neq 0\), $$\sum _ { r = 1 } ^ { n } \sin ( 4 r \theta ) = \frac { \cos 2 \theta - \cos ( 4 n + 2 ) \theta } { 2 \sin 2 \theta }$$ \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-12_2718_35_143_2012}