Questions — CAIE FP1 (549 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2019 November Q1
1 The curve \(C\) has equation \(y = x ^ { a }\) for \(0 \leqslant x \leqslant 1\), where \(a\) is a positive constant. Find, in terms of \(a\), the coordinates of the centroid of the region enclosed by \(C\), the line \(x = 1\) and the \(x\)-axis.
CAIE FP1 2019 November Q2
2 It is given that \(y = \ln ( a x + 1 )\), where \(a\) is a positive constant. Prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } } = ( - 1 ) ^ { n - 1 } \frac { ( n - 1 ) ! a ^ { n } } { ( a x + 1 ) ^ { n } }$$
CAIE FP1 2019 November Q3
3 The integral \(I _ { n }\), where \(n\) is a positive integer, is defined by $$I _ { n } = \int _ { \frac { 1 } { 2 } } ^ { 1 } x ^ { - n } \sin \pi x \mathrm {~d} x$$
  1. Show that $$n ( n + 1 ) I _ { n + 2 } = 2 ^ { n + 1 } n + \pi - \pi ^ { 2 } I _ { n }$$
  2. Find \(I _ { 5 }\) in terms of \(\pi\) and \(I _ { 1 }\).
CAIE FP1 2019 November Q4
4 The line \(y = 2 x + 1\) is an asymptote of the curve \(C\) with equation $$y = \frac { x ^ { 2 } + 1 } { a x + b }$$
  1. Find the values of the constants \(a\) and \(b\).
  2. State the equation of the other asymptote of \(C\).
  3. Sketch C. [Your sketch should indicate the coordinates of any points of intersection with the \(y\)-axis. You do not need to find the coordinates of any stationary points.]
    \(5 \quad\) Let \(S _ { N } = \sum _ { r = 1 } ^ { N } ( 5 r + 1 ) ( 5 r + 6 )\) and \(T _ { N } = \sum _ { r = 1 } ^ { N } \frac { 1 } { ( 5 r + 1 ) ( 5 r + 6 ) }\).
CAIE FP1 2019 November Q6
6 With \(O\) as the origin, the points \(A , B , C\) have position vectors $$\mathbf { i } - \mathbf { j } , \quad 2 \mathbf { i } + \mathbf { j } + 7 \mathbf { k } , \quad \mathbf { i } - \mathbf { j } + \mathbf { k }$$ respectively.
  1. Find the shortest distance between the lines \(O C\) and \(A B\).
  2. Find the cartesian equation of the plane containing the line \(O C\) and the common perpendicular of the lines \(O C\) and \(A B\).
CAIE FP1 2019 November Q7
7 The equation \(x ^ { 3 } + 2 x ^ { 2 } + x + 7 = 0\) has roots \(\alpha , \beta , \gamma\).
  1. Use the relation \(x ^ { 2 } = - 7 y\) to show that the equation $$49 y ^ { 3 } + 14 y ^ { 2 } - 27 y + 7 = 0$$ has roots \(\frac { \alpha } { \beta \gamma } , \frac { \beta } { \gamma \alpha } , \frac { \gamma } { \alpha \beta }\).
  2. Show that \(\frac { \alpha ^ { 2 } } { \beta ^ { 2 } \gamma ^ { 2 } } + \frac { \beta ^ { 2 } } { \gamma ^ { 2 } \alpha ^ { 2 } } + \frac { \gamma ^ { 2 } } { \alpha ^ { 2 } \beta ^ { 2 } } = \frac { 58 } { 49 }\).
  3. Find the exact value of \(\frac { \alpha ^ { 3 } } { \beta ^ { 3 } \gamma ^ { 3 } } + \frac { \beta ^ { 3 } } { \gamma ^ { 3 } \alpha ^ { 3 } } + \frac { \gamma ^ { 3 } } { \alpha ^ { 3 } \beta ^ { 3 } }\).
CAIE FP1 2019 November Q8
8 The matrix \(\mathbf { M }\) is defined by $$\mathbf { M } = \left( \begin{array} { c c c } 2 & m & 1
0 & m & 7
0 & 0 & 1 \end{array} \right) ,$$ where \(m \neq 0,1,2\).
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { M } = \mathbf { P D P } ^ { - 1 }\).
  2. Find \(\mathbf { M } ^ { 7 } \mathbf { P }\).
CAIE FP1 2019 November Q9
9
  1. Use de Moivre's theorem to show that $$\sec 6 \theta = \frac { \sec ^ { 6 } \theta } { 32 - 48 \sec ^ { 2 } \theta + 18 \sec ^ { 4 } \theta - \sec ^ { 6 } \theta }$$
  2. Hence obtain the roots of the equation $$3 x ^ { 6 } - 36 x ^ { 4 } + 96 x ^ { 2 } - 64 = 0$$ in the form sec \(q \pi\), where \(q\) is rational.
CAIE FP1 2019 November Q10
10 The matrix \(\mathbf { A }\) is defined by $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 5 & 1
1 & - 2 & - 2
2 & 3 & \theta \end{array} \right)$$
  1. (a) Find the rank of \(\mathbf { A }\) when \(\theta \neq - 1\).
    (b) Find the rank of \(\mathbf { A }\) when \(\theta = - 1\).
    Consider the system of equations $$\begin{aligned} x + 5 y + z & = - 1
    x - 2 y - 2 z & = 0
    2 x + 3 y + \theta z & = \theta \end{aligned}$$
  2. Solve the system of equations when \(\theta \neq - 1\).
  3. Find the general solution when \(\theta = - 1\).
  4. Show that if \(\theta = - 1\) and \(\phi \neq - 1\) then \(\mathbf { A } \mathbf { x } = \left( \begin{array} { r } - 1
    0
    \phi \end{array} \right)\) has no solution.
CAIE FP1 2019 November Q11 EITHER
10 marks
It is given that \(w = \cos y\) and $$\tan y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } + 2 \tan y \frac { \mathrm {~d} y } { \mathrm {~d} x } = 1 + \mathrm { e } ^ { - 2 x } \sec y$$
  1. Show that $$\frac { \mathrm { d } ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} w } { \mathrm {~d} x } + w = - \mathrm { e } ^ { - 2 x }$$
  2. Find the particular solution for \(y\) in terms of \(x\), given that when \(x = 0 , y = \frac { 1 } { 3 } \pi\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 3 } }\). [10]
CAIE FP1 2019 November Q11 OR
The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations, for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\), as follows: $$\begin{aligned} & C _ { 1 } : r = 2 \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right) ,
& C _ { 2 } : r = \mathrm { e } ^ { 2 \theta } - \mathrm { e } ^ { - 2 \theta } \end{aligned}$$ The curves intersect at the point \(P\) where \(\theta = \alpha\).
  1. Show that \(\mathrm { e } ^ { 2 \alpha } - 2 \mathrm { e } ^ { \alpha } - 1 = 0\). Hence find the exact value of \(\alpha\) and show that the value of \(r\) at \(P\) is \(4 \sqrt { } 2\).
  2. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
  3. Find the area of the region enclosed by \(C _ { 1 } , C _ { 2 }\) and the initial line, giving your answer correct to 3 significant figures.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2017 Specimen Q1
1 The curve \(C\) is defined parametrically by $$x = 2 \cos ^ { 3 } t \quad \text { and } \quad y = 2 \sin ^ { 3 } t , \quad \text { for } 0 < t < \frac { 1 } { 2 } \pi$$ Show that, at the point with parameter \(t\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 1 } { 6 } \sec ^ { 4 } t \operatorname { cosec } t$$
CAIE FP1 2017 Specimen Q2
2 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 4 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 4 x = 7 - 2 t ^ { 2 }$$
CAIE FP1 2017 Specimen Q3
3 Given that \(a\) is a constant, prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( x \mathrm { e } ^ { a x } \right) = n a ^ { n - 1 } \mathrm { e } ^ { a x } + a ^ { n } x \mathrm { e } ^ { a x }$$
CAIE FP1 2017 Specimen Q4
4 The sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 } , \ldots\) is such that, for all positive integers \(n\), $$a _ { n } = \frac { n + 5 } { \sqrt { } \left( n ^ { 2 } - n + 1 \right) } - \frac { n + 6 } { \sqrt { } \left( n ^ { 2 } + n + 1 \right) }$$ The sum \(\sum _ { n = 1 } ^ { N } a _ { n }\) is denoted by \(S _ { N }\).
  1. Find the value of \(S _ { 30 }\) correct to 3 decimal places.
  2. Find the least value of \(N\) for which \(S _ { N } > 4.9\).
CAIE FP1 2017 Specimen Q5
5 marks
5 The cubic equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers, has roots \(\alpha , \beta\) and \(\gamma\), such that $$\begin{aligned} \alpha + \beta + \gamma & = 15
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 83 \end{aligned}$$
  1. Write down the value of \(p\) and find the value of \(q\).
  2. Given that \(\alpha , \beta\) and \(\gamma\) are all real and that \(\alpha \beta + \alpha \gamma = 36\), find \(\alpha\) and hence find the value of \(r\). [5]
CAIE FP1 2017 Specimen Q6
6 The matrix A, where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 0 & 0
10 & - 7 & 10
7 & - 5 & 8 \end{array} \right)$$ has eigenvalues 1 and 3 .
  1. Find corresponding eigenvectors.
    It is given that \(\left( \begin{array} { l } 0
    2
    1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\).
  2. Find the corresponding eigenvalue.
  3. Find a diagonal matrix \(\mathbf { D }\) and matrices \(\mathbf { P }\) and \(\mathbf { P } ^ { - 1 }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { A P } = \mathbf { D }\).
CAIE FP1 2017 Specimen Q7
7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & - 2 & - 3 & 1
3 & - 5 & - 7 & 7
5 & - 9 & - 13 & 9
7 & - 13 & - 19 & 11 \end{array} \right)$$
  1. Find the rank of \(\mathbf { M }\) and a basis for the null space of T .
  2. The vector \(\left( \begin{array} { l } 1
    2
    3
    4 \end{array} \right)\) is denoted by \(\mathbf { e }\). Show that there is a solution of the equation \(\mathbf { M x } = \mathbf { M e }\) of the form \(\mathbf { x } = \left( \begin{array} { c } a
    b
    - 1
    - 1 \end{array} \right)\), where the constants \(a\) and \(b\) are to be found.
CAIE FP1 2017 Specimen Q8
8 The curve \(C\) has equation \(y = \frac { 2 x ^ { 2 } + k x } { x + 1 }\), where \(k\) is a constant.
  1. Find the set of values of \(k\) for which \(C\) has no stationary points.
  2. For the case \(k = 4\), find the equations of the asymptotes of \(C\) and sketch \(C\), indicating the coordinates of the points where \(C\) intersects the coordinate axes.
CAIE FP1 2017 Specimen Q9
6 marks
9 It is given that \(I _ { n } = \int _ { 1 } ^ { \mathrm { e } } ( \ln x ) ^ { n } \mathrm {~d} x\) for \(n \geqslant 0\).
  1. Show that $$I _ { n } = ( n - 1 ) \left[ I _ { n - 2 } - I _ { n - 1 } \right] \text { for } n \geqslant 2 .$$
  2. Hence find, in an exact form, the mean value of \(( \ln x ) ^ { 3 }\) with respect to \(x\) over the interval \(1 \leqslant x \leqslant \mathrm { e }\). [6]
CAIE FP1 2017 Specimen Q10
3 marks
10
  1. Using de Moivre's theorem, show that $$\tan 5 \theta = \frac { 5 \tan \theta - 10 \tan ^ { 3 } \theta + \tan ^ { 5 } \theta } { 1 - 10 \tan ^ { 2 } \theta + 5 \tan ^ { 4 } \theta } .$$
  2. Hence show that the equation \(x ^ { 2 } - 10 x + 5 = 0\) has roots \(\tan ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\tan ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\).
  3. Deduce a quadratic equation, with integer coefficients, having roots \(\sec ^ { 2 } \left( \frac { 1 } { 5 } \pi \right)\) and \(\sec ^ { 2 } \left( \frac { 2 } { 5 } \pi \right)\). [3]
CAIE FP1 2017 Specimen Q11 EITHER
The points \(A , B\) and \(C\) have position vectors \(\mathbf { i } , 2 \mathbf { j }\) and \(4 \mathbf { k }\) respectively, relative to an origin \(O\). The point \(N\) is the foot of the perpendicular from \(O\) to the plane \(A B C\). The point \(P\) on the line-segment \(O N\) is such that \(O P = \frac { 3 } { 4 } O N\). The line \(A P\) meets the plane \(O B C\) at \(Q\).
  1. Find a vector perpendicular to the plane \(A B C\) and show that the length of \(O N\) is \(\frac { 4 } { \sqrt { } ( 21 ) }\).
  2. Find the position vector of the point \(Q\).
  3. Show that the acute angle between the planes \(A B C\) and \(A B Q\) is \(\cos ^ { - 1 } \left( \frac { 2 } { 3 } \right)\).
CAIE FP1 2017 Specimen Q11 OR
The curve \(C\) has polar equation \(r = a ( 1 - \cos \theta )\) for \(0 \leqslant \theta < 2 \pi\).
  1. Sketch \(C\).
  2. Find the area of the region enclosed by the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\), the half-line \(\theta = \frac { 1 } { 2 } \pi\) and the half-line \(\theta = \frac { 3 } { 2 } \pi\).
  3. Show that $$\left( \frac { \mathrm { d } s } { \mathrm {~d} \theta } \right) ^ { 2 } = 4 a ^ { 2 } \sin ^ { 2 } \left( \frac { 1 } { 2 } \theta \right)$$ where \(s\) denotes arc length, and find the length of the arc of \(C\) for which \(\frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 3 } { 2 } \pi\).
CAIE FP1 2015 June Q1
1 The quartic equation \(x ^ { 4 } - p x ^ { 2 } + q x - r = 0\), where \(p , q\) and \(r\) are real constants, has two pairs of equal roots. Show that \(p ^ { 2 } + 4 r = 0\) and state the value of \(q\).
CAIE FP1 2015 June Q2
2 The curve \(C\) has polar equation \(r = \mathrm { e } ^ { 4 \theta }\) for \(0 \leqslant \theta \leqslant \alpha\), where \(\alpha\) is measured in radians. The length of \(C\) is 2015 . Find the value of \(\alpha\).