Questions — CAIE FP1 (549 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2014 November Q11 OR
The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that if \(\mathbf { A }\) is non-singular then
  1. \(\lambda \neq 0\),
  2. the matrix \(\mathbf { A } ^ { - 1 }\) has \(\lambda ^ { - 1 }\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. The \(3 \times 3\) matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { r r r } - 2 & 2 & - 4
    0 & - 1 & 5
    0 & 0 & 3 \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + 3 \mathbf { I } ) ^ { - 1 }$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. Find a non-singular matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { B } = \mathbf { P D P } ^ { - 1 }\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2014 November Q11 OR
The square matrix \(\mathbf { A }\) has \(\lambda\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. Show that if \(\mathbf { A }\) is non-singular then
  1. \(\lambda \neq 0\),
  2. the matrix \(\mathbf { A } ^ { - 1 }\) has \(\lambda ^ { - 1 }\) as an eigenvalue with \(\mathbf { e }\) as a corresponding eigenvector. The \(3 \times 3\) matrices \(\mathbf { A }\) and \(\mathbf { B }\) are given by $$\mathbf { A } = \left( \begin{array} { r r r } - 2 & 2 & - 4
    0 & - 1 & 5
    0 & 0 & 3 \end{array} \right) \quad \text { and } \quad \mathbf { B } = ( \mathbf { A } + 3 \mathbf { I } ) ^ { - 1 }$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix. Find a non-singular matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { B } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2016 November Q1
1 Use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\). Deduce the value of \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { ( 2 r ) ^ { 2 } - 1 }\).
CAIE FP1 2016 November Q2
2 Find the cubic equation with roots \(\alpha , \beta\) and \(\gamma\) such that $$\begin{aligned} \alpha + \beta + \gamma & = 3
\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 1
\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = - 30 \end{aligned}$$ giving your answer in the form \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers to be found.
CAIE FP1 2016 November Q3
3 Find a matrix \(\mathbf { A }\) whose eigenvalues are \(- 1,1,2\) and for which corresponding eigenvectors are $$\left( \begin{array} { l } 1
0
0 \end{array} \right) , \quad \left( \begin{array} { l } 1
1
0 \end{array} \right) , \quad \left( \begin{array} { l } 0
1
1 \end{array} \right) ,$$ respectively.
CAIE FP1 2016 November Q4
4 Using factorials, show that \(\binom { n } { r - 1 } + \binom { n } { r } = \binom { n + 1 } { r }\). Hence prove by mathematical induction that $$( a + x ) ^ { n } = \binom { n } { 0 } a ^ { n } + \binom { n } { 1 } a ^ { n - 1 } x + \ldots + \binom { n } { r } a ^ { n - r } x ^ { r } + \ldots + \binom { n } { n } x ^ { n }$$ for every positive integer \(n\).
CAIE FP1 2016 November Q5
5 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & 3 & 5 & 7
2 & 8 & 7 & 9
3 & 13 & 9 & 11
6 & 24 & 21 & 27 \end{array} \right)$$ Find
  1. the rank of \(\mathbf { A }\),
  2. a basis for the range space of T ,
  3. a basis for the null space of T .
CAIE FP1 2016 November Q6
6 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 7 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 10 x = 116 \sin 2 t$$ State an approximate solution for large positive values of \(t\).
CAIE FP1 2016 November Q7
7 The curve \(C\) has equation \(y = \mathrm { e } ^ { - 2 x }\). Find, giving your answers correct to 3 significant figures,
  1. the mean value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) over the interval \(0 \leqslant x \leqslant 2\),
  2. the coordinates of the centroid of the region bounded by \(C\), \(x = 0\), \(x = 2\) and \(y = 0\).
CAIE FP1 2016 November Q8
8 A curve \(C\) has equation \(x ^ { 2 } + 4 x y - y ^ { 2 } + 20 = 0\). Show that, at stationary points on \(C , x = - 2 y\). Find the coordinates of the stationary points on \(C\), and determine their nature by considering the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the stationary points.
CAIE FP1 2016 November Q9
9 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x \sin x \mathrm {~d} x\). Given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\), prove that, for \(n > 1\), $$I _ { n } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 }$$ By first using the substitution \(x = \cos ^ { - 1 } u\), find the value of $$\int _ { 0 } ^ { 1 } \left( \cos ^ { - 1 } u \right) ^ { 3 } \mathrm {~d} u$$ giving your answer in an exact form.
CAIE FP1 2016 November Q10
10 Let \(z = \cos \theta + \mathrm { i } \sin \theta\). Show that $$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta \quad \text { and } \quad z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ By considering \(\left( z - \frac { 1 } { z } \right) ^ { 4 } \left( z + \frac { 1 } { z } \right) ^ { 2 }\), show that $$\sin ^ { 4 } \theta \cos ^ { 2 } \theta = \frac { 1 } { 32 } ( \cos 6 \theta - 2 \cos 4 \theta - \cos 2 \theta + 2 ) .$$ Hence find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 4 } \theta \cos ^ { 2 } \theta d \theta\).
[0pt] [Question 11 is printed on the next page.]
CAIE FP1 2016 November Q11 EITHER
The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\mathbf { r } = 6 \mathbf { i } - 3 \mathbf { j } + s ( 3 \mathbf { i } - 4 \mathbf { j } - 2 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - \mathbf { j } - 4 \mathbf { k } + t ( \mathbf { i } - 3 \mathbf { j } - \mathbf { k } )$$ respectively. The point \(P\) on \(l _ { 1 }\) and the point \(Q\) on \(l _ { 2 }\) are such that \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\). Show that the position vector of \(P\) is \(3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and find the position vector of \(Q\). Find, in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b } + \mu \mathbf { c }\), an equation of the plane \(\Pi\) which passes through \(P\) and is perpendicular to \(l _ { 1 }\). The plane \(\Pi\) meets the plane \(\mathbf { r } = p \mathbf { i } + q \mathbf { j }\) in the line \(l _ { 3 }\). Find a vector equation of \(l _ { 3 }\).
CAIE FP1 2016 November Q11 OR
A curve \(C\) has parametric equations $$x = 1 - 3 t ^ { 2 } , \quad y = t \left( 1 - 3 t ^ { 2 } \right) , \quad \text { for } 0 \leqslant t \leqslant \frac { 1 } { \sqrt { 3 } }$$ Show that \(\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \left( 1 + 9 t ^ { 2 } \right) ^ { 2 }\). Hence find
  1. the arc length of \(C\),
  2. the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Use the fact that \(t = \frac { y } { x }\) to find a cartesian equation of \(C\). Hence show that the polar equation of \(C\) is \(r = \sec \theta \left( 1 - 3 \tan ^ { 2 } \theta \right)\), and state the domain of \(\theta\). Find the area of the region enclosed between \(C\) and the initial line. \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at \href{http://www.cie.org.uk}{www.cie.org.uk} after the live examination series. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
CAIE FP1 2017 November Q1
1 Find \(\sum _ { r = 1 } ^ { n } ( 4 r - 3 ) ( 4 r + 1 )\), giving your answer in its simplest form.
CAIE FP1 2017 November Q2
2 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 5 x = 4 - 5 t ^ { 2 }$$
CAIE FP1 2017 November Q3
3
  1. Show that \(\frac { \mathrm { d } ^ { n + 1 } } { \mathrm {~d} x ^ { n + 1 } } \left( x ^ { n + 1 } \ln x \right) = \frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( x ^ { n } + ( n + 1 ) x ^ { n } \ln x \right)\).
  2. Prove by mathematical induction that, for all positive integers \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( x ^ { n } \ln x \right) = n ! \left( \ln x + 1 + \frac { 1 } { 2 } + \ldots + \frac { 1 } { n } \right)$$
CAIE FP1 2017 November Q4
4 The cubic equation \(2 x ^ { 3 } - 3 x ^ { 2 } + 4 x - 10 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  1. Find the value of \(( \alpha + 1 ) ( \beta + 1 ) ( \gamma + 1 )\).
  2. Find the value of \(( \beta + \gamma ) ( \gamma + \alpha ) ( \alpha + \beta )\).
CAIE FP1 2017 November Q5
5 The curve \(C\) has equation \(2 x ^ { 3 } + 3 x ^ { 2 } y - 3 y ^ { 3 } - 16 = 0\).
  1. Find the coordinates of the point \(A\) on \(C\) at which \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) and \(x \neq 0\).
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(A\).
CAIE FP1 2017 November Q6
6 The points \(A , B\) and \(C\) have position vectors \(2 \mathbf { i } - \mathbf { j } + \mathbf { k } , 3 \mathbf { i } + 4 \mathbf { j } - \mathbf { k }\) and \(- \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k }\) respectively.
  1. Find the area of the triangle \(A B C\).
    ....................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}]{9221f480-4af6-44be-a535-d2ceb0f8b5d2-08_72_1566_484_328} ................................................................................................................................... ....................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{9221f480-4af6-44be-a535-d2ceb0f8b5d2-08_71_1563_772_331}
    \includegraphics[max width=\textwidth, alt={}, center]{9221f480-4af6-44be-a535-d2ceb0f8b5d2-08_71_1563_868_331}
  2. Find the perpendicular distance of the point \(A\) from the line \(B C\).
  3. Find the cartesian equation of the plane through \(A , B\) and \(C\).
CAIE FP1 2017 November Q7
7 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & - 1 & - 2 & 3
5 & - 3 & - 4 & 25
6 & - 4 & - 6 & 28
7 & - 5 & - 8 & 31 \end{array} \right)$$
  1. Find the rank of \(\mathbf { A }\) and a basis for the null space of T .
  2. Find the matrix product \(\mathbf { A } \left( \begin{array} { r } - 1
    1
    - 1
    1 \end{array} \right)\) and hence find the general solution of the equation \(\mathbf { A } \mathbf { x } = \left( \begin{array} { r } 3
    21
    24
    27 \end{array} \right)\).
    \(8 \quad\) Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec ^ { n } x \mathrm {~d} x\) for \(n > 0\).
CAIE FP1 2017 November Q9
9 The curve \(C\) has equation $$y = \frac { 3 x - 9 } { ( x - 2 ) ( x + 1 ) }$$
  1. Find the equations of the asymptotes of \(C\).
    \includegraphics[max width=\textwidth, alt={}, center]{9221f480-4af6-44be-a535-d2ceb0f8b5d2-14_61_1566_513_328}
  2. Show that there is no point on \(C\) for which \(\frac { 1 } { 3 } < y < 3\).
  3. Find the coordinates of the turning points of \(C\).
  4. Sketch \(C\).
CAIE FP1 2017 November Q10
10
  1. Use de Moivre's theorem to show that $$\sin 5 \theta = 5 \sin \theta - 20 \sin ^ { 3 } \theta + 16 \sin ^ { 5 } \theta$$
  2. Hence explain why the roots of the equation \(16 x ^ { 4 } - 20 x ^ { 2 } + 5 = 0\) are \(x = \pm \sin \frac { 1 } { 5 } \pi\) and \(x = \pm \sin \frac { 2 } { 5 } \pi\).
  3. Without using a calculator, find the exact values of $$\sin \frac { 1 } { 5 } \pi \sin \frac { 2 } { 5 } \pi \sin \frac { 3 } { 5 } \pi \sin \frac { 4 } { 5 } \pi \quad \text { and } \quad \sin ^ { 2 } \left( \frac { 1 } { 5 } \pi \right) + \sin ^ { 2 } \left( \frac { 2 } { 5 } \pi \right) .$$
CAIE FP1 2017 November Q11 EITHER
  1. The vector \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\), and is also an eigenvector of the matrix \(\mathbf { B }\), with corresponding eigenvalue \(\mu\). Show that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A B }\) with corresponding eigenvalue \(\lambda \mu\).
  2. Find the eigenvalues and corresponding eigenvectors of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 0 & 1 & 3
    3 & 2 & - 3
    1 & 1 & 2 \end{array} \right) .$$
  3. The matrix \(\mathbf { B }\), where $$\mathbf { B } = \left( \begin{array} { r r r } 3 & 6 & 1
    1 & - 2 & - 1
    6 & 6 & - 2 \end{array} \right) ,$$ has eigenvectors \(\left( \begin{array} { r } 1
    - 1
    0 \end{array} \right) , \left( \begin{array} { r } 1
    - 1
    1 \end{array} \right)\) and \(\left( \begin{array} { l } 1
    0
    1 \end{array} \right)\). Find the eigenvalues of the matrix \(\mathbf { A B }\), and state corresponding eigenvectors.
CAIE FP1 2017 November Q11 OR
The polar equation of a curve \(C\) is \(r = a ( 1 + \cos \theta )\) for \(0 \leqslant \theta < 2 \pi\), where \(a\) is a positive constant.
  1. Sketch \(C\).
  2. Show that the cartesian equation of \(C\) is $$x ^ { 2 } + y ^ { 2 } = a \left( x + \sqrt { } \left( x ^ { 2 } + y ^ { 2 } \right) \right)$$
  3. Find the area of the sector of \(C\) between \(\theta = 0\) and \(\theta = \frac { 1 } { 3 } \pi\).
  4. Find the arc length of \(C\) between the point where \(\theta = 0\) and the point where \(\theta = \frac { 1 } { 3 } \pi\).