| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2016 |
| Session | November |
| Topic | Reduction Formulae |
9 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x \sin x \mathrm {~d} x\).
Given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } x ^ { n } \sin x \mathrm {~d} x\), prove that, for \(n > 1\),
$$I _ { n } = n \left( \frac { 1 } { 2 } \pi \right) ^ { n - 1 } - n ( n - 1 ) I _ { n - 2 }$$
By first using the substitution \(x = \cos ^ { - 1 } u\), find the value of
$$\int _ { 0 } ^ { 1 } \left( \cos ^ { - 1 } u \right) ^ { 3 } \mathrm {~d} u$$
giving your answer in an exact form.