7 The point \(A\) has coordinates \(( 4 , - 3,2 )\).
The line \(l _ { 1 }\) passes through \(A\) and has equation \(\mathbf { r } = \left[ \begin{array} { r } 4
- 3
2 \end{array} \right] + \lambda \left[ \begin{array} { l } 2
0
1 \end{array} \right]\).
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left[ \begin{array} { r } - 1
3
4 \end{array} \right] + \mu \left[ \begin{array} { r } 1
- 2
- 1 \end{array} \right]\).
The point \(B\) lies on \(l _ { 2 }\) where \(\mu = 2\).
- Find the vector \(\overrightarrow { A B }\).
- Show that the lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
- The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(P\). Find the coordinates of \(P\).
- The point \(C\) lies on a line which is parallel to \(l _ { 1 }\) and which passes through the point \(B\). The points \(A , B , C\) and \(P\) are the vertices of a parallelogram.
Find the coordinates of the two possible positions of the point \(C\).