AQA C4 2011 June — Question 2

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2011
SessionJune
TopicExponential Functions

2 The average weekly pay of a footballer at a certain club was \(\pounds 80\) on 1 August 1960. By 1 August 1985, this had risen to \(\pounds 2000\). The average weekly pay of a footballer at this club can be modelled by the equation $$P = A k ^ { t }$$ where \(\pounds P\) is the average weekly pay \(t\) years after 1 August 1960, and \(A\) and \(k\) are constants.
    1. Write down the value of \(A\).
    2. Show that the value of \(k\) is 1.137411 , correct to six decimal places.
  1. Use this model to predict the year in which, on 1 August, the average weekly pay of a footballer at this club will first exceed \(\pounds 100000\).