AQA C4 2012 June — Question 5

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2012
SessionJune
TopicParametric equations

5 A curve is defined by the parametric equations $$x = 2 \cos \theta , \quad y = 3 \sin 2 \theta$$
    1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = a \sin \theta + b \operatorname { cosec } \theta$$ where \(a\) and \(b\) are integers.
    2. Find the gradient of the normal to the curve at the point where \(\theta = \frac { \pi } { 6 }\).
  1. Show that the cartesian equation of the curve can be expressed as $$y ^ { 2 } = p x ^ { 2 } \left( 4 - x ^ { 2 } \right)$$ where \(p\) is a rational number.