\(\mathbf { 7 } \quad\) The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left[ \begin{array} { r } 0
- 2
q \end{array} \right] + \lambda \left[ \begin{array} { r } 2
0
- 1 \end{array} \right]\), where \(q\) is an integer.
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left[ \begin{array} { l } 8
3
5 \end{array} \right] + \mu \left[ \begin{array} { l } 2
5
4 \end{array} \right]\).
The lines \(l _ { 1 }\) and \(l _ { 2 }\) intersect at the point \(P\).
- Show that \(q = 4\) and find the coordinates of \(P\).
- Show that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular.
- The point \(A\) lies on the line \(l _ { 1 }\) where \(\lambda = 1\).
- Find \(A P ^ { 2 }\).
- The point \(B\) lies on the line \(l _ { 2 }\) so that the right-angled triangle \(A P B\) is isosceles.
Find the coordinates of the two possible positions of \(B\).