Questions (30179 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE P2 2024 November Q2
6 marks Moderate -0.3
2 Let \(\mathrm { f } ( x ) = 4 \sin ^ { 2 } 3 x\).
  1. Find the value of \(\mathrm { f } ^ { \prime } \left( \frac { 1 } { 4 } \pi \right)\).
  2. Find \(\int \mathrm { f } ( x ) \mathrm { d } x\). \includegraphics[max width=\textwidth, alt={}, center]{18aea465-b5b0-48f0-970a-e9ede1dc9370-05_2723_35_101_20}
CAIE P2 2024 November Q3
6 marks Standard +0.3
3 A curve has equation \(6 \mathrm { e } ^ { - x } y ^ { 2 } + \mathrm { e } ^ { 2 x } - 12 y + 7 = 0\).
Find the gradient of the curve at the point \(( \ln 3,2 )\).
CAIE P2 2024 November Q5
10 marks Standard +0.3
5 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = a x ^ { 3 } + b x ^ { 2 } - a x + 8$$ where \(a\) and \(b\) are constants.It is given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\) ,and that the remainder is 24 when \(\mathrm { p } ( x )\) is divided by \(( x - 2 )\) .
  1. Find the values of \(a\) and \(b\) . \includegraphics[max width=\textwidth, alt={}, center]{18aea465-b5b0-48f0-970a-e9ede1dc9370-09_2723_35_101_20}
  2. Factorise \(\mathrm { p } ( x )\) and hence show that the equation \(\mathrm { p } ( x ) = 0\) has exactly one real root.
  3. Solve the equation \(\mathrm { p } \left( \frac { 1 } { 2 } \operatorname { cosec } \theta \right) = 0\) for \(- 90 ^ { \circ } < \theta < 90 ^ { \circ }\). \includegraphics[max width=\textwidth, alt={}, center]{18aea465-b5b0-48f0-970a-e9ede1dc9370-10_499_696_264_680} The diagram shows the curves with equations \(y = \sqrt [ 3 ] { 5 x ^ { 2 } + 7 }\) and \(y = \frac { 27 } { 2 x + 5 }\) for \(x \geqslant 0\).
    The curves meet at the point \(( 2,3 )\).
    Region \(A\) is bounded by the curve \(y = \sqrt [ 3 ] { 5 x ^ { 2 } + 7 }\) and the straight lines \(x = 0 , x = 2\) and \(y = 0\).
    Region \(B\) is bounded by the two curves and the straight line \(x = 0\).
CAIE P2 2024 November Q7
9 marks Standard +0.3
7
  1. Express \(4 \sin \theta \sin \left( \theta + 60 ^ { \circ } \right)\) in the form $$a + R \sin ( 2 \theta - \alpha ) ,$$ where \(a\) and \(R\) are positive integers and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). \includegraphics[max width=\textwidth, alt={}, center]{18aea465-b5b0-48f0-970a-e9ede1dc9370-13_2723_33_99_21}
  2. Hence find the smallest positive value of \(\theta\) satisfying the equation $$\frac { 1 } { 5 } + 4 \sin \theta \sin \left( \theta + 60 ^ { \circ } \right) = 0 .$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. \includegraphics[max width=\textwidth, alt={}, center]{18aea465-b5b0-48f0-970a-e9ede1dc9370-14_2714_38_109_2010}
CAIE P2 2024 November Q1
5 marks Moderate -0.3
1 The variables \(x\) and \(y\) satisfy the equation \(a ^ { 2 y } = \mathrm { e } ^ { 3 x + k }\), where \(a\) and \(k\) are constants.
The graph of \(y\) against \(x\) is a straight line.
  1. Use logarithms to show that the gradient of the straight line is \(\frac { 3 } { 2 \ln a }\).
  2. Given that the straight line passes through the points \(( 0.4,0.95 )\) and \(( 3.3,3.80 )\), find the values of \(a\) and \(k\). \includegraphics[max width=\textwidth, alt={}, center]{468efb3f-be7b-4f9e-b8c3-c6fd40d7714a-03_2723_33_99_21}
CAIE P2 2024 November Q2
4 marks Standard +0.3
2 Solve the inequality \(| x - 7 | > 4 x + 3\).
CAIE P2 2024 November Q3
7 marks Moderate -0.3
3 The function f is defined by \(\mathrm { f } ( x ) = \tan ^ { 2 } \left( \frac { 1 } { 2 } x \right)\) for \(0 \leqslant x < \pi\).
  1. Find the exact value of \(\mathrm { f } ^ { \prime } \left( \frac { 2 } { 3 } \pi \right)\). \includegraphics[max width=\textwidth, alt={}, center]{468efb3f-be7b-4f9e-b8c3-c6fd40d7714a-05_2726_33_97_22}
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } ( \mathrm { f } ( x ) + \sin x ) \mathrm { d } x\).
CAIE P2 2024 November Q5
8 marks Standard +0.3
5 It is given that \(\int _ { a } ^ { a ^ { 3 } } \frac { 10 } { 2 x + 1 } \mathrm {~d} x = 7\), where \(a\) is a constant greater than 1 .
  1. Show that \(a = \sqrt [ 3 ] { 0.5 \mathrm { e } ^ { 1.4 } ( 2 a + 1 ) - 0.5 }\). \includegraphics[max width=\textwidth, alt={}, center]{468efb3f-be7b-4f9e-b8c3-c6fd40d7714a-09_2725_35_99_20}
  2. Use an iterative formula, based on the equation in part (a), to find the value of \(a\) correct to 3 significant figures. Use an initial value of 2 and give the result of each iteration to 5 significant figures.
CAIE P2 2024 November Q6
7 marks Standard +0.3
6 A curve has parametric equations $$x = \frac { \mathrm { e } ^ { 2 t } - 2 } { \mathrm { e } ^ { 2 t } + 1 } , \quad y = \mathrm { e } ^ { 3 t } + 1$$
  1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. Find the exact gradient of the curve at the point where the curve crosses the \(y\)-axis.
CAIE P2 2024 November Q7
11 marks Standard +0.3
7
  1. Prove that \(\cos \left( \theta + 30 ^ { \circ } \right) \cos \left( \theta + 60 ^ { \circ } \right) \equiv \frac { 1 } { 4 } \sqrt { 3 } - \frac { 1 } { 2 } \sin 2 \theta\).
  2. Solve the equation \(5 \cos \left( 2 \alpha + 30 ^ { \circ } \right) \cos \left( 2 \alpha + 60 ^ { \circ } \right) = 1\) for \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  3. Show that the exact value of \(\cos 20 ^ { \circ } \cos 50 ^ { \circ } + \cos 40 ^ { \circ } \cos 70 ^ { \circ }\) is \(\frac { 1 } { 2 } \sqrt { 3 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE P2 2020 Specimen Q1
4 marks Moderate -0.8
1
  1. Tb p lm ial \(2 x ^ { 3 } + a x ^ { 2 } - a x - 2\) wh re \(a\) is a co tan, is d h ed \(\mathrm { y } \quad \mathrm { p } x\) ). It is g n th t \(( x + 1\) is a facto \(6 \quad ( x )\). Fid b le \(6 a\).
  2. Wh n \(a \mathbf { b }\) s th s le , f in e remaid r wh \(\underline { \mathrm { p } } \quad x )\) is \(\dot { \mathbf { d } } \dot { \mathbf { v } } \mathbf { d }\) dt \(\quad x + \beta\).
CAIE P2 2020 Specimen Q2
4 marks Standard +0.3
2 Sb th equ \(\operatorname { tin } \sin 2 \theta \tan \theta = \Im\) o \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P2 2020 Specimen Q3
6 marks Moderate -0.8
3 It is g n th t \(a\) is a p itie co tan.
    1. Sketch sib ed ag am th g ad \(6 y = | 2 x - 3 a |\) ad \(y = | 2 x + 4 a |\).
    2. State th co dia tes
CAIE P2 2020 Specimen Q4
8 marks Moderate -0.3
4
  1. Sb the eq tiந \({ } ^ { 2 x } + 5 ^ { x } = \frac { 13 } { 8 } \quad\) in wer co rect t \(\beta \quad\) sig fican fig es. [44
  2. It is g vert \(\mathbf { h } \mathrm { t } \ln y + \overline { 5 } + \mathrm { n } y = 2 \ln x\). Eq ess \(y\) irt erms \(\mathbf { b } x\), irr fo m no id \(\mathbf { v }\) ng \(\mathbf { g }\) riths.
CAIE P2 2020 Specimen Q5
9 marks Standard +0.3
5 \includegraphics[max width=\textwidth, alt={}, center]{d4bec1a9-2d24-4cf8-9991-9ab61ddbc865-08_430_990_260_539} Th id ag am sto cn \(\mathrm { y } = \frac { \sin 2 \mathrm { x } } { \mathrm { x } + 2 }\) fo \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\). Tb \(x\)-co \(\dot { \mathrm { d } } \mathbf { a }\) te 6 th max mm \(\dot { \mathrm { p } } n M\) is d t ed y \(\alpha\).
  1. Fid \(\frac { \mathrm { dy } } { \mathrm { dx } }\) ad th t \(\alpha\) satisfies th eq tin \(\tan 2 x = 2 x + 4\) [4]
  2. Stw alch atin \(\mathbf { b }\) t \(\alpha\) lies b tweerfd nd
  3. Use th iterati fo mu a \(x _ { n + 1 } = \frac { 1 } { 2 } \tan ^ { - 1 } \left( 2 x _ { n } + 4 \right.\) to id b \& le \(6 \alpha\) co rect tod cimal p aces. Gie th resu to each teratio od cimal places.
CAIE P2 2020 Specimen Q6
8 marks Standard +0.3
6 Th \(\mathbf { p }\) rametric eq tion \(\mathbf { 6 }\) a cn \(\mathbf { e }\) are $$x = \mathrm { e } ^ { 2 t } , \quad y = 4 t \mathrm { e } ^ { t }$$
  1. Stw th \(t \frac { d y } { d x } = \frac { 2 ( t + 1 ) } { e ^ { t } }\).
  2. Fid b eq tin th \(\mathbf { n }\) mal to \(\mathbf { b }\) cn at te \(\dot { \mathbf { p } }\) n wh re \(t = 0\) [4]
CAIE P2 2020 Specimen Q7
11 marks Standard +0.3
7
  1. Shat that \(\tan ^ { 2 } x + \operatorname { co } { } ^ { 2 } x \equiv \sec ^ { 2 } x + \frac { 1 } { 2 } \mathrm { co } 2 x - \frac { 1 } { 2 }\) ach n e fid b ex ct le 6 $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \left( \tan ^ { 2 } x + \cos ^ { 2 } x \right) d x$$
  2. \includegraphics[max width=\textwidth, alt={}, center]{d4bec1a9-2d24-4cf8-9991-9ab61ddbc865-13_556_794_260_639} Th regn en lo edy th cn \(y = \tan x + \mathrm { co } x\) ad th lin \(\mathrm { s } x = 0 \quad x = \frac { 1 } { 4 } \pi\) ad \(y = 0\) is sw n in th d ag am. Fid th ex ct m e \(\mathbf { 6 }\) th sb idpd ed wh n this reg n is ro ated cm p etely abt th \(x\)-ax s. If B e th follw ig lin dpg to cm p ete th an wer(s) to ay q stin (s), th q stin \(\mathrm { m } \quad \mathbf { b } \quad \mathrm { r } ( \mathrm { s } )\) ms tb clearlys n n
CAIE P2 2002 June Q1
4 marks Standard +0.3
1 Solve the inequality \(| x + 2 | < | 5 - 2 x |\).
CAIE P2 2002 June Q2
5 marks Moderate -0.8
2 The cubic polynomial \(3 x ^ { 3 } + a x ^ { 2 } - 2 x - 8\) is denoted by \(\mathrm { f } ( x )\).
  1. Given that ( \(x + 2\) ) is a factor of \(\mathrm { f } ( x )\), find the value of \(a\).
  2. When \(a\) has this value, factorise \(\mathrm { f } ( x )\) completely.
CAIE P2 2002 June Q3
5 marks Moderate -0.8
3 Two variable quantities \(x\) and \(y\) are related by the equation $$y = A x ^ { n }$$ where \(A\) and \(n\) are constants. \includegraphics[max width=\textwidth, alt={}, center]{9b103197-7ba0-427a-b983-34edb51b6cca-2_422_697_977_740} When a graph is plotted showing values of \(\ln y\) on the vertical axis and values of \(\ln x\) on the horizontal axis, the points lie on a straight line. This line crosses the vertical axis at the point ( \(0,2.3\) ) and also passes through the point (4.0,1.7), as shown in the diagram. Find the values of \(A\) and \(n\).
CAIE P2 2002 June Q4
8 marks Moderate -0.3
4
  1. Express \(3 \cos \theta + 2 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), stating the exact value of \(R\) and giving the value of \(\alpha\) correct to 1 decimal place.
  2. Solve the equation $$3 \cos \theta + 2 \sin \theta = 3.5$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
  3. The graph of \(y = 3 \cos \theta + 2 \sin \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\), has one stationary point. State the coordinates of this point. \includegraphics[max width=\textwidth, alt={}, center]{9b103197-7ba0-427a-b983-34edb51b6cca-3_421_823_299_662} The diagram shows the curve \(y = 2 x \mathrm { e } ^ { - x }\) and its maximum point \(P\). Each of the two points \(Q\) and \(R\) on the curve has \(y\)-coordinate equal to \(\frac { 1 } { 2 }\).
CAIE P2 2002 June Q6
10 marks Moderate -0.3
6
    1. Show that \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos 2 x \mathrm {~d} x = \frac { 1 } { 2 }\).
    2. By using an appropriate trigonometrical identity, find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sin ^ { 2 } x \mathrm {~d} x\).
    1. Use the trapezium rule with 2 intervals to estimate the value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec x d x\), giving your answer correct to 2 significant figures.
    2. Determine, by sketching the appropriate part of the graph of \(y = \sec x\), whether the trapezium rule gives an under-estimate or an over-estimate of the true value.
CAIE P2 2002 June Q7
10 marks Standard +0.3
7 The parametric equations of a curve are $$x = t + 2 \ln t , \quad y = 2 t - \ln t$$ where \(t\) takes all positive values.
  1. Express \(\frac { d y } { d x }\) in terms of \(t\).
  2. Find the equation of the tangent to the curve at the point where \(t = 1\).
  3. The curve has one stationary point. Show that the \(y\)-coordinate of this point is \(1 + \ln 2\) and determine whether this point is a maximum or a minimum.
CAIE P2 2003 June Q1
4 marks Moderate -0.3
1 Solve the inequality \(| x - 4 | > | x + 1 |\).
CAIE P2 2003 June Q2
6 marks Moderate -0.3
2 The polynomial \(x ^ { 4 } - 9 x ^ { 2 } - 6 x - 1\) is denoted by \(\mathrm { f } ( x )\).
  1. Find the value of the constant \(a\) for which $$f ( x ) \equiv \left( x ^ { 2 } + a x + 1 \right) \left( x ^ { 2 } - a x - 1 \right)$$
  2. Hence solve the equation \(\mathrm { f } ( x ) = 0\), giving your answers in an exact form.