Questions (30179 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE Further Paper 2 2023 November Q1
4 marks Standard +0.8
1 Show that the system of equations $$\begin{aligned} 14 x - 4 y + 6 z & = 5 \\ x + y + k z & = 3 \\ - 21 x + 6 y - 9 z & = 14 \end{aligned}$$ where \(k\) is a constant, does not have a unique solution and interpret this situation geometrically.
CAIE Further Paper 2 2023 November Q2
5 marks Standard +0.8
2 Find the roots of the equation \(( z + 5 i ) ^ { 3 } = 4 + 4 \sqrt { 3 } i\), giving your answers in the form \(r \cos \theta + i ( r \sin \theta - 5 )\), where \(r > 0\) and \(0 < \theta < 2 \pi\).
CAIE Further Paper 2 2023 November Q3
6 marks Challenging +1.2
3 Find the first three terms in the Maclaurin's series for \(\tanh ^ { - 1 } \left( \frac { 1 } { 2 } e ^ { x } \right)\) in the form \(\frac { 1 } { 2 } \ln a + b x + c x ^ { 2 }\), giving the exact values of the constants \(a , b\) and \(c\).
CAIE Further Paper 2 2023 November Q4
10 marks Standard +0.8
4 Find the particular solution of the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } + 3 y = 27 x ^ { 2 }$$ given that, when \(x = 0 , y = 2\) and \(\frac { \mathrm { dy } } { \mathrm { dx } } = - 8\).
CAIE Further Paper 2 2023 November Q5
10 marks Standard +0.8
5 The curve \(C\) has parametric equations $$\mathrm { x } = \frac { 2 } { 3 } \mathrm { t } ^ { \frac { 3 } { 2 } } - 2 \mathrm { t } ^ { \frac { 1 } { 2 } } , \quad \mathrm { y } = 2 \mathrm { t } + 5 , \quad \text { for } 0 < t \leqslant 3$$
  1. Find the exact length of \(C\).
  2. Find the set of values of \(t\) for which \(\frac { d ^ { 2 } y } { d x ^ { 2 } } > 0\).
CAIE Further Paper 2 2023 November Q6
14 marks Standard +0.3
6
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$\sinh 2 x = 2 \sinh x \cosh x$$ \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_67_1550_374_347} \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_58_1569_475_328} \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_58_1569_566_328} \includegraphics[max width=\textwidth, alt={}]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_54_1566_657_328} ....................................................................................................................................................... . \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_54_1570_840_324} \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_53_1570_932_324} \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_53_1570_1023_324}
  2. Using the substitution \(\mathrm { u } = \sinh \mathrm { x }\), find \(\int \sinh ^ { 2 } 2 x \cosh x \mathrm { dx }\).
  3. Find the particular solution of the differential equation $$\frac { d y } { d x } + y \tanh x = \sinh ^ { 2 } 2 x$$ given that \(y = 4\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2023 November Q7
11 marks
7 The matrix \(\mathbf { A }\) is given by $$A = \left( \begin{array} { r r r } - 6 & 2 & 13 \\ 0 & - 2 & 5 \\ 0 & 0 & 8 \end{array} \right) .$$
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { - 1 } = \mathbf { P D P } ^ { - 1 }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\).
CAIE Further Paper 2 2023 November Q8
15 marks Challenging +1.8
8
  1. State the sum of the series \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 }\), for \(z \neq 1\).
  2. By letting \(z = \cos \theta + i \sin \theta\), where \(\cos \theta \neq 1\), show that $$1 + \cos \theta + \cos 2 \theta + \ldots + \cos ( n - 1 ) \theta = \frac { 1 } { 2 } \left( 1 - \cos n \theta + \frac { \sin n \theta \sin \theta } { 1 - \cos \theta } \right)$$ \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-15_833_785_214_680} The diagram shows the curve with equation \(\mathrm { y } = \cos \mathrm { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  3. By considering the sum of the areas of these rectangles, show that $$\int _ { 0 } ^ { 1 } \cos x d x < \frac { 1 } { 2 n } \left( 1 - \cos 1 + \frac { \sin 1 \sin \frac { 1 } { n } } { 1 - \cos \frac { 1 } { n } } \right)$$
  4. Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } \cos x d x\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2023 November Q1
5 marks Standard +0.3
1 Find the Maclaurin's series for \(\ln ( x + 2 ) + \ln \left( x ^ { 2 } + 5 \right)\) up to and including the term in \(x ^ { 2 }\).
CAIE Further Paper 2 2023 November Q2
7 marks Standard +0.8
2 It is given that $$x = 1 + \frac { 1 } { t } \quad \text { and } \quad y = t e ^ { t }$$
  1. Show that \(\frac { d y } { d x } = - e ^ { t } \left( t ^ { 3 } + t ^ { 2 } \right)\).
  2. Find \(\frac { \mathrm { d } ^ { 2 } \mathrm { y } } { \mathrm { dx } ^ { 2 } }\) in terms of \(t\).
CAIE Further Paper 2 2023 November Q3
8 marks Challenging +1.8
3
  1. Use de Moivre's theorem to show that $$\cos 5 \theta = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta$$
  2. Hence obtain the roots of the equation $$32 x ^ { 5 } - 40 x ^ { 3 } + 10 x - \sqrt { 2 } = 0$$ in the form \(\cos ( q \pi )\), where \(q\) is a rational number.
CAIE Further Paper 2 2023 November Q4
9 marks Standard +0.3
4 Find the solution of the differential equation $$\frac { d y } { d x } + 3 y = \sin x$$ for which \(y = 1\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2023 November Q5
10 marks Hard +2.3
5 \includegraphics[max width=\textwidth, alt={}, center]{1fa404d4-5e14-4356-9b6d-f176d5a9f6db-08_773_1161_278_443} The diagram shows part of the curve \(\mathrm { y } = \mathrm { xsech } ^ { 2 } \mathrm { x }\) and its maximum point \(M\).
  1. Show that, at \(M\), $$2 x \tanh x - 1 = 0$$ and verify that this equation has a root between 0.7 and 0.8 .
  2. By considering a suitable set of rectangles, use the diagram to show that \(\sum _ { r = 2 } ^ { n } r \operatorname { sech } ^ { 2 } r < n \tanh n + \operatorname { lnsechn } - \tanh 1 - \operatorname { lnsech } 1\).
CAIE Further Paper 2 2023 November Q6
10 marks Challenging +1.2
6 The matrix \(\mathbf { P }\) is given by $$\mathbf { P } = \left( \begin{array} { r r r } 1 & - 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & - 1 \end{array} \right) .$$
  1. State the eigenvalues of \(\mathbf { P }\).
  2. Use the characteristic equation of \(\mathbf { P }\) to find \(\mathbf { P } ^ { - 1 }\).
    The \(3 \times 3\) matrix \(\mathbf { A }\) has distinct non-zero eigenvalues \(a , \frac { 1 } { 2 } , 2\) with corresponding eigenvectors $$\left( \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right) , \quad \left( \begin{array} { r } - 1 \\ 2 \\ 0 \end{array} \right) , \quad \left( \begin{array} { r } 1 \\ 1 \\ - 1 \end{array} \right) ,$$ respectively.
  3. Find \(\mathbf { A } ^ { - 1 }\) in terms of \(a\).
CAIE Further Paper 2 2023 November Q7
12 marks Challenging +1.8
7
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$2 \sinh ^ { 2 } A = \cosh 2 A - 1$$ \includegraphics[max width=\textwidth, alt={}, center]{1fa404d4-5e14-4356-9b6d-f176d5a9f6db-12_79_1556_358_347} \includegraphics[max width=\textwidth, alt={}]{1fa404d4-5e14-4356-9b6d-f176d5a9f6db-12_69_1575_466_328} ....................................................................................................................................... ........................................................................................................................................
  2. A curve has equation \(\mathrm { y } = \mathrm { x } ^ { 2 }\), for \(0 \leqslant x \leqslant \frac { 2 } { 3 }\). The area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(S\).
    Use the substitution \(\mathrm { X } = \frac { 1 } { 2 } \operatorname { sinhu }\) to show that \(S = \frac { 1 } { 32 } \pi \left( \frac { 820 } { 81 } - \ln 3 \right)\).
CAIE Further Paper 2 2023 November Q8
14 marks Challenging +1.8
8 It is given that \(\mathbf { v } = y ^ { 4 }\) and $$y ^ { 3 } \frac { d ^ { 2 } y } { d x ^ { 2 } } + 3 y ^ { 2 } \left( \frac { d y } { d x } \right) ^ { 2 } + y ^ { 3 } \frac { d y } { d x } + y ^ { 4 } = e ^ { - 2 x }$$
  1. Show that $$\frac { d ^ { 2 } v } { d x ^ { 2 } } + \frac { d v } { d x } + 4 v = 4 e ^ { - 2 x }$$
  2. Find \(y\) in terms of \(x\), given that, when \(x = 0 , y = 1\) and \(\frac { \mathrm { dy } } { \mathrm { dx } } = - \frac { 3 } { 8 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2023 November Q4
10 marks Standard +0.3
4 Find the particular solution of the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } + 3 y = 27 x ^ { 2 }$$ given that, when \(x = 0 , y = 2\) and \(\frac { d y } { d x } = - 8\).
CAIE Further Paper 2 2023 November Q6
14 marks Standard +0.3
6
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$\sinh 2 x = 2 \sinh x \cosh x$$ \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_67_1550_374_347} \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_58_1569_475_328} \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_58_1569_566_328} \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_59_1566_657_328} \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_58_1570_749_324} \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_54_1570_840_324} \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_63_1570_922_324} \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_67_1570_1009_324}
  2. Using the substitution \(\mathrm { u } = \sinh \mathrm { x }\), find \(\int \sinh ^ { 2 } 2 x \cosh x \mathrm {~d} x\).
  3. Find the particular solution of the differential equation $$\frac { d y } { d x } + y \tanh x = \sinh ^ { 2 } 2 x$$ given that \(y = 4\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2023 November Q8
15 marks Challenging +1.8
8
  1. State the sum of the series \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 }\), for \(z \neq 1\).
  2. By letting \(z = \cos \theta + i \sin \theta\), where \(\cos \theta \neq 1\), show that $$1 + \cos \theta + \cos 2 \theta + \ldots + \cos ( n - 1 ) \theta = \frac { 1 } { 2 } \left( 1 - \cos n \theta + \frac { \sin n \theta \sin \theta } { 1 - \cos \theta } \right)$$ \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-15_833_785_214_680} The diagram shows the curve with equation \(\mathrm { y } = \cos \mathrm { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  3. By considering the sum of the areas of these rectangles, show that $$\int _ { 0 } ^ { 1 } \cos x d x < \frac { 1 } { 2 n } \left( 1 - \cos 1 + \frac { \sin 1 \sin \frac { 1 } { n } } { 1 - \cos \frac { 1 } { n } } \right)$$
  4. Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } \cos x d x\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2024 November Q1
4 marks Standard +0.8
1 Find the set of values of \(k\) for which the system of equations $$\begin{array} { r } x + 5 y + 6 z = 1 \\ k x + 2 y + 2 z = 2 \\ - 3 x + 4 y + 8 z = 3 \end{array}$$ has a unique solution and interpret this situation geometrically.
CAIE Further Paper 2 2024 November Q2
6 marks Standard +0.8
2 It is given that $$x = 1 + \frac { 1 } { t } \quad \text { and } \quad y = \cos ^ { - 1 } t \quad \text { for } 0 < t < 1$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { t ^ { 2 } } { \sqrt { 1 - t ^ { 2 } } }\). \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-05_2723_33_99_22}
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - t ^ { a } \left( 1 - t ^ { 2 } \right) ^ { b } \left( 2 - t ^ { 2 } \right)\) ,where \(a\) and \(b\) are constants to be determined.
CAIE Further Paper 2 2024 November Q3
12 marks Challenging +1.8
3 A curve has equation \(y = \mathrm { e } ^ { x }\) for \(\ln \frac { 4 } { 3 } \leqslant x \leqslant \ln \frac { 12 } { 5 }\). The area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(A\).
  1. Use the substitution \(u = \mathrm { e } ^ { x }\) to show that $$A = 2 \pi \int _ { \frac { 4 } { 3 } } ^ { \frac { 12 } { 5 } } \sqrt { 1 + u ^ { 2 } } \mathrm {~d} u$$
  2. Use the substitution \(u = \sinh v\) to show that $$A = \pi \left( \frac { 904 } { 225 } + \ln \frac { 5 } { 3 } \right) .$$ \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-06_2716_38_109_2012} \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-07_2726_35_97_20}
CAIE Further Paper 2 2024 November Q4
9 marks Standard +0.3
4 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } - 11 & 1 & 8 \\ 0 & - 2 & 0 \\ - 16 & 1 & 13 \end{array} \right)$$
  1. Show that \(\left( \begin{array} { l } 1 \\ 1 \\ 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and state the corresponding eigenvalue.
  2. Show that the characteristic equation of \(\mathbf { A }\) is \(\lambda ^ { 3 } - 19 \lambda - 30 = 0\) and hence find the other eigenvalues of \(\mathbf { A }\). \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-08_2717_35_106_2015} \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-09_2726_33_97_22}
  3. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\).
CAIE Further Paper 2 2024 November Q5
10 marks Standard +0.3
5 Find the particular solution of the differential equation $$6 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = t ^ { 2 } + t + 1$$ given that, when \(t = 0 , x = 12\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - 6\).
[0pt] [10] \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-10_2715_40_110_2007} \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-11_2726_35_97_20}
CAIE Further Paper 2 2024 November Q6
10 marks Challenging +1.2
6 \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-12_533_1532_278_264} The diagram shows the curve with equation \(y = \left( \frac { 1 } { 2 } \right) ^ { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(N\) rectangles each of width \(\frac { 1 } { N }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x > L _ { N }\), where $$L _ { N } = \frac { 1 } { 2 N \left( 2 ^ { \frac { 1 } { N } } - 1 \right) }$$ \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-12_2717_38_109_2009}
  2. Use a similar method to find, in terms of \(N\), an upper bound \(U _ { N }\) for \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x\).
  3. Find the least value of \(N\) such that \(U _ { N } - L _ { N } \leqslant 10 ^ { - 3 }\).
  4. Given that \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x = \frac { 1 } { 2 \ln 2 }\) ,use the value of \(N\) found in part(c)to find upper and lower bounds for \(\ln 2\) .