| Question | Answer | Marks | AO | Guidance | ||||||||||
| \multirow[t]{7}{*}{2} | \multirow{7}{*}{} | DR | \multirow{6}{*}{
| \multirow{4}{*}{
| \multirow[b]{3}{*}{Consideration of a finite upper limit} | \multirow{7}{*}{Can be seen as part of limit of both terms, but must be explicitly shown as zero} | ||||||||
| \(\int ( x - 1 ) ^ { - \frac { 3 } { 2 } } \mathrm {~d} x = - 2 ( x - 1 ) ^ { - \frac { 1 } { 2 } } ( + c )\) | ||||||||||||||
| \(\int _ { 5 } ^ { N } ( x - 1 ) ^ { - \frac { 3 } { 2 } } \mathrm {~d} x = \left[ - 2 ( x - 1 ) ^ { - \frac { 1 } { 2 } } \right] _ { 5 } ^ { N }\) \(- \frac { 2 } { \sqrt { N - 1 } } + \frac { 2 } { \sqrt { 5 - 1 } }\) | ||||||||||||||
| \(\lim _ { N \rightarrow \infty } \frac { 1 } { \sqrt { N - 1 } } = 0\) oe | 2.1 | Not just eg \(\frac { 1 } { \infty } = 0\) | ||||||||||||
| \(\int _ { 5 } ^ { \infty } ( x - 1 ) ^ { - \frac { 3 } { 2 } } \mathrm {~d} x = \lim _ { N \rightarrow \infty } \left\{ - \frac { 2 } { \sqrt { N - 1 } } + \frac { 2 } { \sqrt { 5 - 1 } } \right\} = 1\) | 2.2a | AG. Convincing argument equating improper integral to solution | ||||||||||||
| [5] | ||||||||||||||
| Question | Answer | Marks | AO | Guidance | ||||||||||||||||||||
| 3 | (a) | \includegraphics[max width=\textwidth, alt={}]{58789f16-bfc3-4f21-b7c4-abca4f549fc7-10_450_671_93_559} |
|
|
|
| ||||||||||||||||||
| (b) | So \(x = \pm 0.1 \cos ( 5 \pi \mathrm { t } )\) or \(x = 0.1 \sin \left( 5 \pi t \pm \frac { 1 } { 2 } \pi \right)\) when \(t = 0.75\) or 0.35 \(x = - \frac { \sqrt { 2 } } { 20 } ( = - 0.0707 \text { to } 3 \mathrm { sf } )\) |
|
| or by argument from sketch | Condone amplitude of 0.2 for M1 | |||||||||||||||||||
| 4 | (a) | \(\begin{aligned} | ( 2 + 3 i ) - ( 1 - i ) ( = \pm ( 1 + 4 i ) ) \text { soi } | |||||||||||||||||||||
| | 1 + 4 i | = \sqrt { 1 ^ { 2 } + 4 ^ { 2 } } | ||||||||||||||||||||||||
| 17 \end{aligned}\) |
|
|
| |||||||||||||||||||||
| (b) |
|
|
|
|
| |||||||||||||||||||
| Question | Answer | Marks | AO | Guidance | ||||||||||||||||||||||||||||||||
| 5 | (a) | DR \(\begin{aligned} | \frac { 1 } { 2 } \int \left( \sqrt { \sin \theta } e ^ { \frac { 1 } { 3 } \cos \theta } \right) ^ { 2 } \mathrm {~d} \theta | |||||||||||||||||||||||||||||||||
| \mathrm {~A} = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi } \sin \theta \mathrm { e } ^ { \frac { 2 } { 3 } \cos \theta } \mathrm {~d} \theta | ||||||||||||||||||||||||||||||||||||
| = \frac { 1 } { 2 } \times - \frac { 3 } { 2 } \left[ \mathrm { e } ^ { \frac { 2 } { 3 } \cos \theta } \right] _ { 0 } ^ { \pi } | ||||||||||||||||||||||||||||||||||||
| \frac { 3 } { 4 } \left( \mathrm { e } ^ { \frac { 2 } { 3 } } - \mathrm { e } ^ { - \frac { 2 } { 3 } } \right) \end{aligned}\) |
|
|
|
| ||||||||||||||||||||||||||||||||
| (b) |
|
|
|
|
| |||||||||||||||||||||||||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AO | Guidance | |||||||||
| 1 |
| M1 | 1.1 |
|
| ||||||||
| B1ft | 1.1 | Ft workings from complex conjugate distinct pair (with real component) | |||||||||||
| M1 | 1.1 | Attempting to find argument using trigonometry | |||||||||||
| A1 | 2.5 |
|
| ||||||||||
| Question | Answer | Marks | AO | Guidance | ||||||||||||||||||
| \multirow[t]{3}{*}{2} | \multirow[t]{3}{*}{(a)} | \(\begin{aligned} | \left( \begin{array} { c } 13 | |||||||||||||||||||
| 3 | ||||||||||||||||||||||
| - 14 \end{array} \right) \cdot \left( \begin{array} { l } 1 | ||||||||||||||||||||||
| 5 | ||||||||||||||||||||||
| 3 \end{array} \right) = 13 + 15 - 42 = - 14 ( \text { so } R \text { is on } \Pi ) | ||||||||||||||||||||||
| \operatorname { eg } 7 - \mu = 13 \Rightarrow \mu = - 6 \Rightarrow | ||||||||||||||||||||||
| \mathbf { r } = \left( \begin{array} { c } 7 | ||||||||||||||||||||||
| 9 | ||||||||||||||||||||||
| - 2 \end{array} \right) - 6 \left( \begin{array} { c } - 1 | ||||||||||||||||||||||
| 1 | ||||||||||||||||||||||
| 2 \end{array} \right) = \left( \begin{array} { c } 13 | ||||||||||||||||||||||
| 3 | ||||||||||||||||||||||
| - 14 \end{array} \right) \quad \left( \text { so } R \text { is also on } l _ { 2 } \right) \end{aligned}\) |
|
|
| |||||||||||||||||||
| Alternate method \(\begin{aligned} | \left( \begin{array} { l } 1 | |||||||||||||||||||||
| 5 | ||||||||||||||||||||||
| 3 \end{array} \right) \cdot \left( \left( \begin{array} { c } 7 | ||||||||||||||||||||||
| 9 | ||||||||||||||||||||||
| - 2 \end{array} \right) + \mu \left( \begin{array} { c } - 1 | ||||||||||||||||||||||
| 1 | ||||||||||||||||||||||
| 2 \end{array} \right) \right) = 46 + 10 \mu = - 14 \Rightarrow \mu = - 6 | ||||||||||||||||||||||
| \mu = - 6 \Rightarrow | ||||||||||||||||||||||
| \mathbf { r } = \left( \begin{array} { c } 7 | ||||||||||||||||||||||
| 9 | ||||||||||||||||||||||
| - 2 \end{array} \right) - 6 \left( \begin{array} { c } - 1 | ||||||||||||||||||||||
| 1 | ||||||||||||||||||||||
| 2 \end{array} \right) = \left( \begin{array} { c } 13 | ||||||||||||||||||||||
| 3 | ||||||||||||||||||||||
| - 14 \end{array} \right) \text { so } R \text { is } ( 13,3 , - 14 ) \end{aligned}\) |
| AG. Substituting in expression of the point into the equation of the plane to find a value for \(\mu\) AG. | Answer in vector form is acceptable. | |||||||||||||||||||
| [2] | ||||||||||||||||||||||
| (b) |
| M1 | 3.1a | Equating the lines and deriving 2 useful equations. Ignore attempts at \(z\) coefficient equation | Can be BC | |||||||||||||||||
| Question | Answer | Marks | AO | Guidance | |||||||||||||||||
| 4 | (a) | \(\operatorname { det } \mathbf { A } ( = 0.6 \times 1.8 - - 0.8 \times 2.4 ) = 3\) | B1 [1] | 1.1 | |||||||||||||||||
| (b) | Determinant of rotation \(= 1\) Determinant of rotation × determinant of stretch \(= 1 \times \mathrm { sf } = 3 \Rightarrow \mathrm { sf } = 3\) |
| 1.1 2.2a | ||||||||||||||||||
| (c) | Since the second column of A contains entries bigger than 1 (in magnitude) the stretch must be parallel to the \(y\)-axis. |
| 2.4 | Or any correct, complete explanation. | \(\begin{gathered} \left( \begin{array} { c c } \cos \theta | - \sin \theta | |||||||||||||||
| \sin \theta | \cos \theta \end{array} \right) \left( \begin{array} { l l } 1 | 0 | |||||||||||||||||||
| 0 | 3 \end{array} \right) | ||||||||||||||||||||
| = \left( \begin{array} { c c } \cos \theta | - 3 \sin \theta | ||||||||||||||||||||
| \sin \theta | 3 \cos \theta \end{array} \right) \end{gathered}\) | ||||||||||||||||||||
| (d) | \(\sin \theta = - 0.8\) and \(\cos \theta = 0.6\) oe awrt \(- 53 ^ { \circ }\) (or - 0.93 rads) |
|
| Condone if only one equation or \(53 ^ { \circ }\) ( 0.93 rads) clockwise or \(307 ^ { \circ }\) (5.36 rads) (anticlockwise). | |||||||||||||||||
| 5 | (a) | Min value of cosh is 1 (and point on ground is at the minimum) \(( \text { so } 0 = k \times 1 - 1 \Rightarrow ) k = 1\) |
|
| Using minimum point of curve and knowledge of cosh graph |
| |||||||||||||||
| (b) | \(\begin{aligned} | \text { Passes through } ( 0,3 ) = > 3 = \cosh ( - b ) - 1 | |||||||||||||||||||
| = > b = - \cosh ^ { - 1 } ( 3 + 1 ) | |||||||||||||||||||||
| b = ( \pm ) \ln \left( 4 + \sqrt { } \left( 4 ^ { 2 } - 1 \right) \right) | |||||||||||||||||||||
| = > b = \ln ( 4 + \sqrt { } 15 ) | |||||||||||||||||||||
| \text { Passes through } ( 2,0 ) = > 0 = \cosh ( 2 a - b ) - 1 | |||||||||||||||||||||
| \Rightarrow b = 2 a | |||||||||||||||||||||
| = > a = 1 / 2 \ln ( 4 + \sqrt { } 15 ) \end{aligned}\) |
|
|
|
| |||||||||||||||||
| (c) | (By symmetry of both;) (4,3) |
| 2.2a | ||||||||||||||||||
| (d) |
|
|
|
| Condone 27/4 \(a = 1.0317 \ldots , b = 2.0634 \ldots , d _ { J } = 10.067 \ldots\) Condone 10.07 only if clear evidence of production | ||||||||||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AO | Guidance | |||||||||||||||
| 1 | (a) | DR \(\begin{aligned} | u = x ^ { 2 } | ||||||||||||||||
| 3 ( \sqrt { u } ) ^ { 3 } - 2 ( \sqrt { u } ) ^ { 2 } - 5 \sqrt { u } - 4 ( = 0 ) \end{aligned}\) \(3 u \sqrt { u } - 5 \sqrt { u } = 2 u + 4 \Rightarrow u ( 3 u - 5 ) ^ { 2 } = ( 2 u + 4 ) ^ { 2 }\) \(\begin{aligned} | u \left( 9 u ^ { 2 } - 30 u + 25 \right) = 4 u ^ { 2 } + 16 u + 16 = > | ||||||||||||||||||
| 9 u ^ { 3 } - 34 u ^ { 2 } + 9 u - 16 = 0 \end{aligned}\) |
|
|
|
| |||||||||||||||
|
|
|
| ||||||||||||||||
| [4] | |||||||||||||||||||
| (b) |
|
|
| Their \(\alpha ^ { 2 } \beta ^ { 2 } + \beta ^ { 2 } \gamma ^ { 2 } + \gamma ^ { 2 } \alpha ^ { 2 }\) from part (a) over \(\pm \frac { 4 } { 3 }\) | Strict ft | ||||||||||||||
| Question | Answer | Marks | AO | Guidance | |||
| 2 | (a) | \(\begin{aligned} | \text { DR } | ||||
| ( r + 2 ) ( r - 1 ) \end{aligned}\) \(\begin{aligned} | \frac { A } { r - 1 } + \frac { B } { r + 2 } | ||||||
| A = 1 , B = - 1 | |||||||
| = \end{aligned}\) \(\begin{array} { c c c c c c } \frac { 1 } { 4 } | - | \frac { 1 } { 7 } | \cdots | - | \frac { 1 } { n - 1 } | ||
| \frac { 1 } { 5 } | - | \frac { 1 } { 8 } | \frac { 1 } { n - 3 } | - | \frac { 1 } { n } | ||
| \frac { 1 } { 6 } | - | \frac { 1 } { 9 } | \frac { 1 } { n - 2 } | - | \frac { 1 } { n + 1 } | ||
| \frac { 1 } { 7 } | - | \cdots | \frac { 1 } { n - 1 } | - | \frac { 1 } { n + 2 } \end{array}\) \(\begin{aligned} | = \frac { 1 } { 4 } + \frac { 1 } { 5 } + \frac { 1 } { 6 } - \frac { 1 } { n } - \frac { 1 } { n + 1 } - \frac { 1 } { n + 2 } | |
| = \frac { 37 } { 60 } - \frac { 1 } { n } - \frac { 1 } { n + 1 } - \frac { 1 } { n + 2 } \end{aligned}\) | A1 | 1.1 | Correct factorisation of denominator soi Correct form for partial fractions |
| |||
| Alternative Method \(\begin{aligned} | \therefore \sum _ { r = 5 } ^ { n } \frac { 3 } { r ^ { 2 } + r - 2 } = \sum _ { r = 5 } ^ { n } \frac { 1 } { r - 1 } - \sum _ { r = 5 } ^ { n } \frac { 1 } { r + 2 } | ||||||
| = \sum _ { r = 5 } ^ { n } \frac { 1 } { r - 1 } - \sum _ { r = 8 } ^ { n + 3 } \frac { 1 } { r - 1 } | |||||||
| = \sum _ { r = 5 } ^ { 7 } \frac { 1 } { r - 1 } - \sum _ { r = n + 1 } ^ { n + 3 } \frac { 1 } { r - 1 } \end{aligned}\) | М1 | Using partial fractions, separating into two sums, re-indexing so that the summands have identical form and cancelling central terms. | Might see start and end terms explicitly. eg \(\sum _ { r = 5 } ^ { n } \frac { 1 } { r - 1 } - \sum _ { r = 8 } ^ { n + 3 } \frac { 1 } { r - 1 }\) | ||||
| Question | Answer | Marks | AO | Guidance | ||||||||||||||
| \multirow{2}{*}{} | \multirow{2}{*}{} | \(\begin{aligned} | \therefore \sum _ { r = 5 } ^ { n } \frac { 3 } { r ^ { 2 } + r - 2 } = | |||||||||||||||
| = \frac { 1 } { 4 } + \frac { 1 } { 5 } + \frac { 1 } { 6 } - \frac { 1 } { n } - \frac { 1 } { n + 1 } - \frac { 1 } { n + 2 } | ||||||||||||||||||
| = \frac { 37 } { 60 } - \frac { 1 } { n } - \frac { 1 } { n + 1 } - \frac { 1 } { n + 2 } \end{aligned}\) | A1 | AG. |
| |||||||||||||||
| [5] | ||||||||||||||||||
| (b) | \(= \frac { 37 } { 60 }\) or awrt 0.617 |
| 2.2a | |||||||||||||||
| 3 | (a) | \(\begin{aligned} | \ln ( 1 + \sin \theta ) = 0 \Rightarrow 1 + \sin \theta = 1 \Rightarrow \sin \theta = 0 | |||||||||||||||
| \text { so } \alpha = 0 \text { and } \beta = \pi \end{aligned}\) |
|
| ||||||||||||||||
| (b) | \(\begin{aligned} | A = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi } ( \ln ( 1 + \sin \theta ) ) ^ { 2 } \mathrm {~d} \theta | ||||||||||||||||
| = 0.4162 ( 4 \mathrm { sf } ) \text { cao } \end{aligned}\) |
|
| Correct formula for area with \(r\) correctly substituted and their limits. Must be unambiguous but can be implied by correct answer/later work BC | Incorrect formula = M0A0 Condone missing \(\mathrm { d } \theta\) | ||||||||||||||
| (c) |
|
|
|
|
| |||||||||||||
| Question | Answer | Marks | AO | Guidance | ||||||||||
| 4 | (a) | DR | ||||||||||||
| \(\begin{aligned} | r ^ { 2 } = ( - 4 ) ^ { 2 } + ( \sqrt { 48 } ) ^ { 2 } \quad \text { or } ( r \cos \theta = - 4 \text { and } | |||||||||||||
| r \sin \theta = \sqrt { 48 } ) \text { or } \tan \theta = - \sqrt { 3 } \text { oe } | ||||||||||||||
| r = 8 \left( \mathrm { ie } z = 8 \mathrm { e } ^ { \mathrm { i } \theta } \right) \quad \theta = 2 \pi / 3 \left( \mathrm { ie } z = r \mathrm { e } ^ { \mathrm { i } 2 \pi / 3 } \right) | ||||||||||||||
| \sqrt [ 3 ] { 8 } \text { or } 2 | ||||||||||||||
| \frac { 2 \pi } { 9 } \text { soi } | ||||||||||||||
| \frac { 2 \pi } { 3 } + 2 \pi k \text { for } k = 1 \text { and } 2 \text { oe seen } | ||||||||||||||
| 2 \mathrm { e } ^ { \frac { 2 } { 9 } \pi i } , 2 \mathrm { e } ^ { \frac { 8 } { 9 } \pi i } \text { and } 2 \mathrm { e } ^ { - \frac { 4 } { 9 } \pi i } \end{aligned}\) | A1 | 2.1 | Correct use of relevant formula(e). Some working must be seen. | Correct answer with no working: M0A0 or eg \(\theta = 8 \pi / 3\) | ||||||||||
| B1ft | 2.1 | Argument of (principal) cube root is one third of their argument | ||||||||||||
| M1 | 2.2a | Considering further arguments at angular distance \(2 \pi\) | ||||||||||||
| A1 | 1.1 | or eg \(2 \mathrm { e } ^ { \frac { 2 } { 9 } \pi i } , 2 \mathrm { e } ^ { \frac { 8 } { 9 } \pi i }\) and \(2 \mathrm { e } ^ { \frac { 14 } { 9 } \pi i }\) | Must be in exponential form, not just \(r =\) and \(\theta =\). Do not condone any missing i's. | |||||||||||
| (b) |
| B1 |
|
|
| |||||||||
| Question | Answer | Marks | AO | Guidance | ||||||||||||||
| 5 | (a) | (i) | \(\begin{aligned} | \mathrm { f } ^ { \prime } ( x ) = \frac { 1 } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } } \text { from the formula book } | ||||||||||||||
| \text { so } \mathrm { f } ^ { \prime \prime } ( x ) = - \frac { 1 } { 2 } \cdot \frac { 1 } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \cdot ( - 2 x ) | ||||||||||||||||||
| = \frac { x } { \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \end{aligned}\) | М1 | 1.1 | Formula from the Formula Booklet and attempt differentiation | To within sign error | ||||||||||||||
| (a) | (ii) | \(\begin{aligned} | f ( 0 ) = 0 , f ^ { \prime } ( 0 ) = 1 \text { and } f ^ { \prime \prime } ( 0 ) = 0 | |||||||||||||||
| f ^ { \prime \prime \prime } ( x ) = \frac { \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } - x \cdot \frac { 3 } { 2 } \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } \cdot ( - 2 x ) } { \left( 1 - x ^ { 2 } \right) ^ { 3 } } | ||||||||||||||||||
| \text { so } f ^ { \prime \prime \prime } ( 0 ) = 1 \text { and } f ( x ) = x + \frac { 1 } { 6 } x ^ { 3 } + \ldots \end{aligned}\) |
|
|
|
| ||||||||||||||
| (a) | (iii) | \(\begin{aligned} \int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) \mathrm { d } x \approx \int _ { 0 } ^ { \frac { 1 } { 2 } } x | + \frac { 1 } { 6 } x ^ { 3 } \mathrm {~d} x | |||||||||||||||
| = | 0.127604167 \ldots | |||||||||||||||||
| = | 0.127604 \text { to } 6 \mathrm { dp } \end{aligned}\) |
|
|
| ||||||||||||||
| (b) | \(\begin{aligned} | \int 1 \times \sin ^ { - 1 } x \mathrm {~d} x = x \sin ^ { - 1 } x - \int \frac { x } { \sqrt { 1 - x ^ { 2 } } } \mathrm {~d} x | ||||||||||||||||
| = x \sin ^ { - 1 } x + \left( 1 - x ^ { 2 } \right) ^ { \frac { 1 } { 2 } } ( + \mathrm { c } ) | ||||||||||||||||||
| \int _ { 0 } ^ { \frac { 1 } { 2 } } \mathrm { f } ( x ) = \frac { \pi } { 12 } + \frac { \sqrt { 3 } } { 2 } - 1 \end{aligned}\) |
|
| Attempt integration by parts | ignore limits. Formula for parts must be correct | ||||||||||||||
| Question | Answer | Mark | AO | Guidance | ||||||
| \multirow[t]{3}{*}{1} | \multirow[t]{3}{*}{(a)} |
| M1 | 1.1a | Normal, mean \(\mu _ { A } + \mu _ { B } + \mu _ { C }\) | \multirow{3}{*}{} | ||||
| A1 | 1.1 | Variance 419 | ||||||||
| \(\mathrm { P } ( > 720 ) = 0.176649\) | A1 | 1.1 | Answer, 0.177 or better, www | |||||||
| \multirow[t]{2}{*}{1} | \multirow[t]{2}{*}{(b)} | \(2 A + B \sim \mathrm {~N} ( 701,757 )\) | M1 | 1.1a | Normal, same mean, \(4 \sigma _ { A } { } ^ { 2 } + \sigma _ { B } { } ^ { 2 }\) | \multirow{2}{*}{} | ||||
| \(\mathrm { P } ( > 720 ) = 0.244919\) | A1 [2] | 1.1 | Answer, art 0.245 | |||||||
| \multirow{2}{*}{2} | \multirow{2}{*}{(a)} | \(\frac { { } ^ { 8 } C _ { 3 } \times { } ^ { 20 } C _ { 5 } } { { } ^ { 28 } C _ { 8 } }\) | M1 A1 | 3.1b 1.1 | (Product of two \({ } ^ { n } C _ { r }\) ) ÷ \({ } ^ { n } C _ { r }\) At least two \({ } ^ { n } C _ { r }\) correct | \multirow[t]{2}{*}{Or \(\frac { 8 } { 28 } \times \frac { 7 } { 27 } \times \frac { 6 } { 26 } \times \frac { 20 } { 25 } \times \ldots \times \frac { 16 } { 21 } \times { } ^ { 8 } C _ { 3 } = 0.27934 \ldots\)} | ||||
| \(\frac { 56 \times 15504 } { 3108105 } = 0.27934 \ldots\) | A1 [3] | 1.1 | Any exact form or awrt 0.279 | |||||||
| 2 | (b) |
| M1 A1 | 3.1b 2.1 |
| Or, e.g. find \({ } _ { 12 } \mathrm { C } _ { 4 }\) - (\# (all separate) +\#(all together) \(+ \# ( 2,1,1 ) \times 3 +\) \#(2,2)) | ||||
| М1 | 1.1 | |||||||||
| A1 | 1.1 | |||||||||
| [4] | ||||||||||
| Question | Answer | Mark | AO | Guidance | |||||
| \multirow{7}{*}{3} | \multirow{7}{*}{(a)} | \(\mathrm { H } _ { 0 } : \mu = 700\) | B2 | 1.1 | One error, e.g. no or wrong | Ignore failure to define \(\mu\) | |||
| \(\mathrm { H } _ { 1 } : \mu < 700\) where \(\mu\) is the mean reaction | 1.1 | letter, \(\neq\), etc : B1 | here | ||||||
| \(\bar { x } = 607\) | М1 | 3.3 | Find sample mean | ||||||
| \(z = - 1.822\) or \(p = 0.0342\) or \(\mathrm { CV } = 616.05 \ldots\) | A1 | 3.4 | Correct \(z , p\) or CV | ||||||
| \(z < - 1.645\) or \(p < 0.05\) or \(607 < \mathrm { CV }\) | A1 | 1.1 | Correct comparison | ||||||
| Reject \(\mathrm { H } _ { 0 }\) | M1ft | 1.1 | Correct first conclusion | Needs correct method, like- | |||||
| Significant evidence that mean reaction times | A1ft | 2.2b | Context, not too definite (e.g. not "international athletes' reaction times are shorter" | ft on their \(z , p\) or CV | |||||
| 3 | (b) | (i) | Uses more information (e.g. magnitudes of differences) | B1 [1] | 2.4 | ||||
| \multirow{5}{*}{3} | \multirow{5}{*}{(b)} | \multirow{5}{*}{(ii)} | \(\mathrm { H } _ { 0 } : m = 700 , \mathrm { H } _ { 1 } : m < 700\) where \(m\) is the median reaction time for all international athletes | B1 | 2.5 | Same as in (i) but different letter or "median" stated | |||
| |||||||||
| For both, and \(T\) correct | |||||||||
| \(n = 6 , \mathrm { CV } = 2\) | A1 | 1.1 | Correct CV | ||||||
| Do not reject \(\mathrm { H } _ { 0 }\). Insufficient evidence that median reaction times of international athletes are shorter | A1ft [6] | 2.2b | In context, not too definite | FT on their \(T\) | |||||
| 3 | (c) | They use different assumptions | B1 [1] | 2.3 | Not "one is more accurate" | ||||
| Question | Answer | Mark | AO | Guidance | |||||||||||||||||||||||||||||||||
| 4 | (a) | \(\begin{aligned} | \int _ { 0 } ^ { a } x \frac { 2 x } { a ^ { 2 } } d x = 4 | ||||||||||||||||||||||||||||||||||
| { \left[ \frac { 2 x ^ { 3 } } { 3 a ^ { 2 } } \right] = 4 } | |||||||||||||||||||||||||||||||||||||
| \frac { 2 } { 3 } a = 4 \Rightarrow a = 6 \end{aligned}\) |
|
| |||||||||||||||||||||||||||||||||||
| 4 | (b) |
|
|
|
|
| |||||||||||||||||||||||||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Mark | AO | Guidance | |||||||||||||||||
| 1 | (a) | 0.8392... | B1 [1] | 1.1 | Awrt 0.839 | \(\begin{aligned} S _ { x x } | = 1.7449 \ldots , S _ { y y } = 41.2 \ldots , | ||||||||||||||
| S _ { x y } | = 7.116 \ldots \end{aligned}\) | ||||||||||||||||||||
| 1 | (b) | \(y = - 1.180 + 4.0781 x\) |
|
|
| ||||||||||||||||
| 1 | (c) | Value of PMCC suggests that there is strong correlation, or 0.75 shown close to mean 0.399 |
| 3.5a |
| Not "0.75 is close to mean", unless properly justified, e.g. SD (= 0.264) calculated | |||||||||||||||
| 1 | (d) | Whether \(x = 0.75\) is within the data range |
| 3.5b |
| Or clear reference to interpolation. NB: 95\% CI for \(x\) is ( \(- 0.156,0.954\) ) | |||||||||||||||
| 2 | (a) |
|
|
|
|
| |||||||||||||||
| 2 | (b) | Occurrence of a bus is not a random event if it runs on or close to a schedule. |
| 2.4 |
| Not "not independent" without such justification. Not "not constant rate". No extras. | |||||||||||||||
| Question | Answer | Mark | AO | Guidance | |||||
| \multirow[t]{4}{*}{3} | (a) | \(\mathrm { H } _ { 0 } : \mu = 500 , \mathrm { H } _ { 1 } : \mu < 500\) | B1 | 1.1 | One error, e.g. \(\mathrm { H } _ { 1 } : \mu \neq 500\), or \(\mu\) not defined, or all in words: B1 | \(x\) or \(\bar { x } : 0\) unless defined as population mean (then B1) | |||
| \(\begin{aligned} | \bar { X } \sim \mathrm {~N} \left( 500 , \frac { 80 ^ { 2 } } { 40 } \right) = \mathrm { N } ( 500,160 ) \text { and } \bar { X } | ||||||||
| \mathrm { P } ( \bar { X } < 473 ) = 0.01640 \text { or } z = - 2.13 ( 45 ) | |||||||||
| \text { or } \mathrm { CV } = 470.6 \end{aligned}\) | М1 | 3.3 | \(p\) or \(z\) correct to 3 sf . | Can be implied by 0.0164, 0.9836, 0.433, 0.198, 0.000 but not 0.3679 or 0.00127 | |||||
| \(p > 0.01\) or \(z > - 2.326 \quad\) or \(473 > 470.6\) | A1 | 1.1 | Compare \(p\) with 0.01 or \(z\) with -2.326, or 2.326 used in CV | Must be like-with-like, Not e.g. 0.9836 > 0.01 or \(p < 2.326\) | |||||
| Do not reject \(\mathrm { H } _ { 0 }\). Insufficient evidence that greatest weight that new design can support is less than the greatest weight that the traditional design can support. |
| 1.1 | Correct first conclusion, needs correct method and like-with-like, ft on test statistic if method correct Contextualised, not too definite | But BOD if no explicit comparison of \(p\) with 0.01 Not "the new design does not have a smaller greatest weight . . ." | |||||
| 3 | (b) | Standard deviation/variance remains unchanged, or sample must be random | B1 [1] | 1.2 | No extras. Not "same distribution". | Not "assume normal"; this is not needed | |||
| 3 | (c) |
| B1 [1] | 2.1 | Allow "population distribution assumed to be normal". No extras, e.g. "and sample size is large". | Allow "yes as we do not know that the distribution for the new design is normal" only if clearly refers to the new design only | |||
| Question | Answer | Mark | AO | Guidance | |||||||||||||
| 4 | (a) | \(9 \times \frac { 40 } { 9 } = 40\) | B1 [1] | 1.1 | 40 or awrt 40.0 only | ||||||||||||
| 4 | (b) | \(\frac { 1 - p } { p ^ { 2 } } = \frac { 40 } { 9 }\) | М1 | 3.1b | Use correct formula for variance | SC: insufficient working, \(\frac { 3 } { 8 }\) only: M0B1 for \(\frac { 3 } { 8 }\), then B0 | |||||||||||
| \(\begin{aligned} | \mathrm { E } ( D ) = 1 / p \quad \left[ = \frac { 8 } { 3 } \right] | ||||||||||||||||
| \mathrm { E } ( 3 D + 5 ) = 3 \times \frac { 8 } { 3 } + 5 \quad [ = 13 ] \end{aligned}\) | B1ft | 2.3 | - formula for \(\mathrm { E } ( D )\) |
| |||||||||||||
| A1ft [6] | 1.1 | \(3 \times (\) their \(\mathrm { E } ( D ) ) + 5\) | |||||||||||||||
| SC: \(\frac { 1 - p } { p ^ { 2 } } = 40\) (their 40), \(p = \frac { - 1 \pm \sqrt { 161 } } { 80 }\), reject negative solution, \(\mathrm { E } ( D ) = \frac { 1 + \sqrt { 161 } } { 2 } = 6.844 , \mathrm { E } ( 3 D + 5 ) = 25.53 : \quad \mathrm { M } 1 , \mathrm { M } 1 \mathrm {~A} 0 , \mathrm {~B} 1 , \mathrm {~B} 2\) total \(5 / 6\) | |||||||||||||||||
| 4 | (c) | ||||||||||||||||
| \(\begin{aligned} | \mathrm { P } ( D > \mathrm { E } ( D ) ) = \mathrm { P } ( D \geq 3 ) | ||||||||||||||||
| = ( 1 - p ) ^ { 2 } | |||||||||||||||||
| = \frac { 25 } { 64 } \text { or } 0.390625 \end{aligned}\) |
|
|
|
| |||||||||||||
| Question | Answer | Mark | AO | Guidance | ||||||
| \multirow[t]{10}{*}{5} | \multirow{10}{*}{} | \(\mathrm { H } _ { 0 } : m _ { Q } = m _ { R } , \mathrm { H } _ { 1 } : m _ { Q } \neq m _ { R }\), where \(m _ { Q }\) and \(m _ { R }\) are the medians of the rankings given to \(Q\) and | B1 | 1.1 | Allow \(m\) undefined. If verbal, must mention medians, \(m\) or distribution. Allow \(m _ { d } = 0\) as opposed to \(m Q = m _ { R }\) | Not anything that might be \(\mu\) unless symbol clearly defined as median. Not "there is no difference in the ranks ..." | ||||
| Sum of ranks \(= 1 / 2 \times 54 \times 55 = 1485\) | М1 | 1.1 | Find sum of ranks | |||||||
| \(R _ { m } = 1485 - 726 = 759 \quad\) [or 561] | A1 | 1.1 | Correct value of \(R _ { m }\) seen | Allow even if 726 used later | ||||||
| \(\begin{array} { r } R _ { m } \sim \mathrm {~N} ( 660 , | ||||||||||
| \quad \ldots 3300 ) \end{array}\) |
|
| normal, mean their \(\frac { 1 } { 2 } \times 24 \times\) 55 | |||||||
| Allow SD/Var muddle | ||||||||||
| \(\begin{aligned} \mathrm { P } \left( R _ { m } \geq 759 \right) | = 0.0432 \text { (3 s.f.) } | |||||||||
| { [ \text { or } z } | = 1.715 ] \end{aligned}\) |
|
| |||||||
| (Same for \(\mathrm { P } \left( R _ { m } \leq 561 \right)\) Allow \(z \square \in [ 1.71,1.715 ]\), allow \(z = 1.72\) only if cc demonstrated correct | |||||||||
| M1 A1 | Not 759 - or 726 - ...; not wrong tail for comparison, but allow ± Needs correct cc | Or 561.5 > 547.4 Wrong \(z\)-value: M1A1ft B0 | |||||||
| \(p > 0.025,2 p > 0.05 , z < 1.96\), or 1.96 used in CV | B1 | 1.1 | Explicit correct comparison | Needs like-with-like (e.g. \(p\) must be < 0.5) | ||||||
| Do not reject \(\mathrm { H } _ { 0 }\). Insufficient evidence of a difference between the ranks. |
|
| Correct first conclusion, needs correct method and like-with-like Contextualised, not too definite | ft on wrong ts, or 1-tail/2-tail confusions, e.g. \(p\) compared with 0.05 or not explicit, or \(z \geq 1.645\) | ||||||
| \includegraphics[max width=\textwidth, alt={}]{6cdb3135-90ca-42f1-bab1-a4b35451cea2-10_54_1750_1703_611} | ||||||||||
| Book | A | B | C | D | E | F | G | H | I | J | K | L |
| \(x\) | 0.95 | 0.65 | 0.70 | 0.90 | 0.55 | 1.40 | 1.50 | 0.50 | 1.15 | 0.35 | 0.20 | 0.35 |
| \(y\) | 6.06 | 7.00 | 2.00 | 5.87 | 4.00 | 5.36 | 7.19 | 2.50 | 3.00 | 8.29 | 1.37 | 2.00 |
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Mark | AO |
| ||||||||||||||||||
| \multirow{2}{*}{} | \multirow{2}{*}{} | \multirow{2}{*}{} | \multirow[t]{2}{*}{
| M1 | 3.3 | Square root correct Awrt 1.96 used, can be implied | \multirow{2}{*}{Allow e.g. (49.30, 56.9)} | ||||||||||||||
| A1 [4] | 3.4 | Both, only these numbers (4 sf needed at least once) | |||||||||||||||||||
| 2 | (a) | (i) | The points do not lie very close to a straight line | B1 [1] | 1.1 | Or equivalent. Must refer to diagram, not just to "correlation" | Ignore extras unless wrong | ||||||||||||||
| \multirow{3}{*}{} | \multirow{3}{*}{} | \multirow[t]{3}{*}{(ii)} | \(\mathrm { H } _ { 0 } : \rho = 0 , \mathrm { H } _ { 1 } : \rho > 0\), where \(\rho\) is the population pmcc between prices in 1972 and prices in 2018 | B2 | 1.1 2.5 |
| \(\mathrm { H } _ { 0 }\) : no correlation, \(\mathrm { H } _ { 1 }\) : positive correlation: B 1 | ||||||||||||||
| FT on CV 0.5760 only | ||||||||||||||||||||
|
|
| |||||||||||||||||||
| 2 | (b) | 0.650 |
|
| Full marks for correct answer by any method | SC: if B0 allow B1 for any 3 of 8.85, 46.35, 8.8725, 241.7331, 43.153 | |||||||||||||||
| Question | Answer | Mark | AO | Guidance | |||||||||||||||
| \multirow{2}{*}{3} | \multirow{2}{*}{(a)} | \multirow{2}{*}{} | \multirow[t]{2}{*}{
| \multirow[t]{2}{*}{
| "Events occur independently and at constant average rate": B0 | ||||||||||||||
|
| ||||||||||||||||||
| 3 | (b) | (i) | 0.146(223) BC |
|
|
| |||||||||||||
| 3 | (ii) | 0.133(372) BC |
|
|
| ||||||||||||||
| 3 | (c) |
|
|
|
| Allow this M1 also from \(\lambda = 7.2 ( 0.187,0.110,0.189 )\) | |||||||||||||
| 3 | (d) | Sales of CD players and integrated systems need to be independent |
| 1.1 | Need "independent" or "not related" clearly referred to the two types of machine. | Not just "purchases independent" or "distributions independent" | |||||||||||||
| \multirow{2}{*}{3} | \multirow{2}{*}{(e)} | \multirow{2}{*}{} | \multirow[t]{2}{*}{B1 [1]} | \multirow[t]{2}{*}{3.5b} | Any reason for nonindependence of sales of CD players and integrated sound systems | Can get B0B1 provided they are focussing on independence | |||||||||||||
| e.g. CDs/CD players, or assuming that integrated systems don't include CD players | ||||||||||||||||||
| Question | Answer | Mark | AO | Guidance | |||||||||||||||
| 4 | (a) | \(\begin{aligned} | \int _ { 1 } ^ { \infty } k x ^ { - n } \mathrm {~d} x = \left[ \frac { k } { ( 1 - n ) x ^ { n - 1 } } \right] _ { 1 } ^ { \infty } | ||||||||||||||||
| = \frac { k } { n - 1 } = 1 \text { so } k = n - 1 \end{aligned}\) |
|
|
| Don't need full details of \(\lim ( a \rightarrow \infty )\) | |||||||||||||||
| 4 | (b) | (i) | \(\begin{aligned} | \int 3 x ^ { - 4 } \mathrm {~d} x = - \frac { 1 } { x ^ { 3 } } + c | |||||||||||||||
| x = 1 , \mathrm {~F} ( x ) = 0 \text { so } c = 1 . \text { Hence } 1 - x ^ { - 3 } | |||||||||||||||||||
| \mathrm {~F} ( x ) = \begin{cases} 0 | x < 1 | ||||||||||||||||||
| 1 - \frac { 1 } { x ^ { 3 } } | x \geq 1 \end{cases} \end{aligned}\) |
|
|
|
| ||||||||||||||
| 4 | (ii) | \(\begin{aligned} | \frac { \mathrm { P } [ ( X > 7 ) \cap ( X > 5 ) ] } { \mathrm { P } ( X > 5 ) } = \frac { \mathrm { P } ( X > 7 ) } { \mathrm { P } ( X > 5 ) } | ||||||||||||||||
| = \frac { 1 - \mathrm { F } ( 7 ) } { 1 - \mathrm { F } ( 5 ) } | |||||||||||||||||||
| = \frac { 125 } { 343 } \text { or } 0.364 ( 431 \ldots ) \end{aligned}\) |
|
|
|
| |||||||||||||||
| Question | Answer | Mark | AO | Guidance | ||||||
| \multirow{5}{*}{4} | \multirow{5}{*}{(c)} |
| M1* B1 | 2.1 1.1 |
| SC: \(\mathrm { E } \left( X ^ { 2 } \right) = \frac { n - 1 } { n - 3 }\), M1B1 \(\mathrm { E } ( X ) = \frac { n - 1 } { n - 2 } \Rightarrow n \neq 2\) or 3 : (not valid, must consider ln if \(n = 2\) or 3 ): B0 | ||||
| No marks just for this unless last 3 marks all zero, then if this (or for \(n = 2\) ) is shown, award SC B1 Make deduction based on convergence, ft | ||||||||||
| Infinite integral does not converge if \(3 - n \geq 0\) | *dep M1 | 2.2a | No limits used: M0B1M0B0 | |||||||
| If \(n \geq 4\) then \(\mathrm { E } ( X ) = \left[ \frac { k x ^ { 2 - n } } { ( 2 - n ) } \right] _ { 1 } ^ { \infty }\) converges | B1 | 2.3 | Consider convergence of \(\mathrm { E } ( X )\) | SC: \(\operatorname { Var } ( X ) < 0\) when \(n < 3\) : M1B1M1 (B0) A0 | ||||||
| Therefore \(\operatorname { Var } ( X )\) is not defined if and only if \(n = 2\) or 3 . | A1 [5] | 2.2a | Shown not defined for \(n = 2\) or 3 and only for those | But no need to state "if and only if" | ||||||
| Question | Answer | Mark | AO | Guidance | ||||||||
| \multirow[t]{8}{*}{1} | \multirow{8}{*}{(a)} | \(\mathrm { H } _ { 0 } : m _ { A } = m _ { B } , \mathrm { H } _ { 1 } : m _ { A } < m _ { B }\) where \(m _ { A }\) and \(m _ { B }\) | B1 | 1.1 | OR: Median journey times equal, oe. Allow if \(m\) s used but not defined | Allow "mean" or "average" only if "population" stated | ||||||
| М1 | 1.1 | Find either \(\mathrm { P } ( \geq 219 )\) (218.5) or \(\mathrm { P } ( \leq 141 )\) (141.5) | Use of 0.9559 is M0 here. For CV method see below | |||||||||
| М1 | 1.1 | 0.0421, 0.0401, 0.470 (no/wrong cc, \(\sqrt { }\) ): M1 | \(0.9559 > 0.9 :\) A1A1 (M1A1) \(0.9559 > 0.1 :\) A1A0 M0A0 | ||||||||
| 0.0441 < 0.1 | A1ft | 1.1 | Explicit comparison. FT on | |||||||||
| Alternative: | ||||||||||||
| CV \(180 - z \times \sqrt { 5 } 10\) 141 (141.5) used \(z = 1.282 \quad ( \mathrm { CV } = 151.05,151.058 .\). \(141.5 < 151.05 ( 85 ) \quad\) or \(218.5 > 208.95\) | М1 M1 A1 A1 | Allow \(\sqrt { }\) errors Stated or implied CV and cc correct e.g. 141 < 150.55 | \(180 + 1.282 \sqrt { } 510\) etc is M0 unless 219 (218.5) used, in which case give M2(A1A1) E.g. \(219 > 209.45\) | |||||||||
| Reject \(\mathrm { H } _ { 0 }\). Significant evidence that route B takes longer | M1ft A1ft [8] | 1.1 2.2b | Correct first conclusion Contextualised, not too definite | Needs like-with-like, e.g. 0.9559 with 0.9 | ||||||||
| SC Sum of A's ranks \(= 435 - 219 = 216\) used: B1B0 M0M1A0A1 M1A1 max 5/8 | ||||||||||||
|
| |||||||||||
| 1 | (b) | Must be a random sample (of all journeys) Or distributions must be same shape (necessary assumption for Wilcoxon ranksum test!) | B1 [1] | 3.5b | Or equivalent. Allow "(journeys) independent" | Not "representative". | ||||||
| 2 | \(\begin{aligned} | 3 \mathrm { E } ( X ) = 30 \text { or } \mathrm { E } ( X ) = 10 | ||||||||||
| 9 \times \operatorname { Var } ( X ) = 36 \text { or } \operatorname { Var } ( X ) = 4 \end{aligned}\) | B1 B1 | 2.2a 2.2a | Used, stated or implied One of these, used, stated or implied | |||||||||
| Question | Answer | Mark | AO | Guidance | |||
| \multirow{5}{*}{} | \multirow{5}{*}{} | \multirow{5}{*}{} | \(\frac { 1 } { 1 } \left( n ^ { 2 } - 1 \right) = 4\) | M1 | 2.2a | \(n = 7\) only, no need for "reject -7" | \multirow[b]{2}{*}{Allow if \(\mathrm { E } ( 3 X + m )\) used rather than \(\mathrm { E } [ 3 ( X + m ) ]\)} |
| \(\mathrm { E } ( X - m ) = \frac { 1 } { 2 } ( n + 1 )\) | M1 | 3.1b | Use expectation of uniform, e.g. \(2 m + n + 1 = 20\). | ||||
| Alternative: \(\operatorname { Var } ( Y + m ) = \frac { 1 } { 12 } \left( n ^ { 2 } - 1 \right)\) | М1 A1 М1 | \(n = 7\) only Use expectation of uniform, e.g. \(2 m + n + 1 = 20\). | No need for "reject -7" | ||||
| \(10 - m = 4\) | М1 | 2.1 | Validly derive single equation for \(m\) | ||||
| \(m = 6\) | A1 [7] | 2.2a | \(m = 6\) only | NB: \(\operatorname { Var } = ( n - 1 ) ^ { 2 } / 12\) is from continuous uniform! | |||
| \multirow{4}{*}{3} | \multirow{4}{*}{(a)} | \multirow{4}{*}{} | \({ } ^ { 5 } C _ { 3 } \times { } ^ { 21 } C _ { 2 } + { } ^ { 5 } C _ { 4 } \times { } ^ { 21 } C _ { 1 } + 1 \quad [ = 2100 + 105 + 1 ]\) | M1dep | 3.1b | Any correct pair of \({ } ^ { n } C _ { r }\) s multiplied | Or \(1 - \mathrm { P } ( 0,1,2 ) = 1 - .9665\) |
| A1 | 1.1 | All terms correct | |||||
| \(\div { } ^ { 26 } C _ { 5 } [ = 65780 ]\) | *M1 | 1.1 | |||||
| \(\frac { 1103 } { 32890 }\) or \(0.0335 \ldots\) | A1 [4] | 3.2a | Awrt 0.0335 or any exact fraction | e.g. \(\frac { 2206 } { 65780 }\) or \(\frac { 264720 } { 7893600 }\) | |||
| Alternative: \(\frac { 5 } { 26 } \times \frac { 4 } { 25 } \times \frac { 3 } { 24 } \times \frac { 2 } { 23 } \times \frac { 1 } { 22 }\) | B1 | Must have 5 oe, e.g. \({ } ^ { 5 } C _ { 1 }\) | |||||
| 3 | (b) | (i) | \(\frac { 22 ! \times 5 ! } { 26 ! } \left( = \frac { 1 \times 2 \times 3 \times 4 \times 5 } { 23 \times 24 \times 25 \times 26 } = \frac { 120 } { 358800 } \right)\) | M1 A1 | 1.1 2.1 | Oe. Allow M1 for 21! instead of 22! Fully correct | \(\frac { 1 \times 2 \times 3 \times 4 \times 5 } { 22 \times 23 \times 24 \times 25 \times 26 } :\) M1 |
| Question | Answer | Mark | AO | Guidance | |||||
| \(= \frac { 1 } { 2990 } \quad\) AG | A1 [3] | 2.2a | Correctly obtain AG using exact method | Allow even if no working after \(22 ! \times 5 ! \div 26\) ! | |||||
| \multirow{8}{*}{3} | \multirow{8}{*}{(b)} | \multirow{8}{*}{(ii)} | 22 fences: 22 for [VVV] \(\times 21\) for [VV] | M1 | 3.1b | Correct strategy, allow \({ } ^ { 22 } C _ { 2 }\) for \({ } ^ { 22 } P _ { 2 }\) | |||
| Consonants arranged in 21! ways | M1 | 1.1 | At least one of these, no subtraction |
| |||||
| Vowels arranged in 5! ways ( \(= { } ^ { 5 } P _ { 3 } \times { } ^ { 2 } P _ { 2 }\) ) | A1 | 2.1 | Both correct | NB: \({ } ^ { 5 } C _ { 3 } \times 3 ! \times 2 ! = 5 !\) | |||||
| \(\begin{aligned} | \text { Product } \div 26 ! = \frac { 21 } { 2990 } | ||||||||
| \left( = 2.832 \times 10 ^ { 24 } \div 4.0329 \times 10 ^ { 26 } \right) \end{aligned}\) |
| 3.2a | Allow from calculator but must be exact fraction | ||||||
| М1 | 3.1b | Correct strategy, allow \(23 ! \times 2 ! \times 3 !\) | (Must subtract \(2 \times 1 / 2990\) as 23! method counts | |||||
| A1 | 2.1 | Correct \(\left( 5 ! = { } ^ { 5 } P _ { 3 } \times { } ^ { 2 } P _ { 2 } = \right. \left. { } ^ { 5 } C _ { 3 } \times 2 ! \times 3 ! \right)\) | |||||||
| M1 also for subtracting \(1 \times\) |
| ||||||||
| Answer is \(\frac { 21 } { 2990 }\) | A1 | 1.1 |
| ||||||
| Question | Answer | Mark | AO | Guidance | |||||
| Mean \(= 400 \div 100 ( = 4 )\) and \(p = 1 /\) mean | M1 | 2.4 | Use mean (or P(1) etc) to deduce \(p\) ("Determine", so justification needed for 0.25) | Needs to deduce \(p\) in part (a), not defer it to (b) | |||||
| \multirow{3}{*}{4} | \multirow[t]{3}{*}{(b)} | Probability is \(0.75 ^ { 6 } ( = 0.1779785 \ldots )\) | M1 | 3.3 | SC Geo(0.2): \(0.8 { } ^ { 6 }\) M1A0 | ||||
| Or: 0.177978 or 0.177979 or better seen, or \(1 - [ \mathrm { P } ( 1 ) + \ldots + \mathrm { P } ( 6 ) ]\) with evidence, e.g. formula | M1 | Allow ± 1 term | |||||||
| Expected frequency \(=\) probability \(\times 100 = 17.798\) | A1 [2] | 2.1 | 17.798 correctly obtained, with sufficient evidence, www | \(100 - \Sigma\) (other frequencies): SC B1 | |||||
| \multirow{6}{*}{4} | \multirow{6}{*}{(c)} | Ho: data consistent with (geometric) | B1 | 1.1 |
| E.g. \(\mathrm { H } _ { 0 } : X \sim \operatorname { Geo } ( p )\) Allow Geo(0.25) | |||
| \(\Sigma X ^ { 2 } = 9.005\) | B1 | 1.1 | |||||||
| \(9.005 < 11.07 ( v = 5 )\) | B1 | 1.1 | |||||||
| Do not reject \(\mathrm { H } _ { 0 }\). | M1ft | 1.1 | Correct first conclusion, ft on their 9.005 or on 12.59, needs like-with-like | Allow from comparison with 12.59 but nothing else | |||||
| Insufficient evidence that a geometric distribution is not a good fit. | A1ft [5] | 2.2b | Contextualised, not too definite (needs double negative) Don't penalise "Geo(0.25)" | Allow addition slip in \(\Sigma X ^ { 2 }\) SC Geo(0.2): can get full marks if given data used, \(\Sigma X ^ { 2 } = 4.54\) used gets B1B1B0M1A1 | |||||