| Exam Board | OCR |
|---|---|
| Module | Further Statistics (Further Statistics) |
| Year | 2021 |
| Session | June |
| Marks | 27 |
| Topic | Combinations & Selection |
| Question | Answer | Mark | AO | Guidance | ||||||||
| \multirow[t]{8}{*}{1} | \multirow{8}{*}{(a)} | \(\mathrm { H } _ { 0 } : m _ { A } = m _ { B } , \mathrm { H } _ { 1 } : m _ { A } < m _ { B }\) where \(m _ { A }\) and \(m _ { B }\) | B1 | 1.1 | OR: Median journey times equal, oe. Allow if \(m\) s used but not defined | Allow "mean" or "average" only if "population" stated | ||||||
| М1 | 1.1 | Find either \(\mathrm { P } ( \geq 219 )\) (218.5) or \(\mathrm { P } ( \leq 141 )\) (141.5) | Use of 0.9559 is M0 here. For CV method see below | |||||||||
| М1 | 1.1 | 0.0421, 0.0401, 0.470 (no/wrong cc, \(\sqrt { }\) ): M1 | \(0.9559 > 0.9 :\) A1A1 (M1A1) \(0.9559 > 0.1 :\) A1A0 M0A0 | ||||||||
| 0.0441 < 0.1 | A1ft | 1.1 | Explicit comparison. FT on | |||||||||
| Alternative: | ||||||||||||
| CV \(180 - z \times \sqrt { 5 } 10\) 141 (141.5) used \(z = 1.282 \quad ( \mathrm { CV } = 151.05,151.058 .\). \(141.5 < 151.05 ( 85 ) \quad\) or \(218.5 > 208.95\) | М1 M1 A1 A1 | Allow \(\sqrt { }\) errors Stated or implied CV and cc correct e.g. 141 < 150.55 | \(180 + 1.282 \sqrt { } 510\) etc is M0 unless 219 (218.5) used, in which case give M2(A1A1) E.g. \(219 > 209.45\) | |||||||||
| Reject \(\mathrm { H } _ { 0 }\). Significant evidence that route B takes longer | M1ft A1ft [8] | 1.1 2.2b | Correct first conclusion Contextualised, not too definite | Needs like-with-like, e.g. 0.9559 with 0.9 | ||||||||
| SC Sum of A's ranks \(= 435 - 219 = 216\) used: B1B0 M0M1A0A1 M1A1 max 5/8 | ||||||||||||
|
| |||||||||||
| 1 | (b) | Must be a random sample (of all journeys) Or distributions must be same shape (necessary assumption for Wilcoxon ranksum test!) | B1 [1] | 3.5b | Or equivalent. Allow "(journeys) independent" | Not "representative". | ||||||
| 2 | \(\begin{aligned} | 3 \mathrm { E } ( X ) = 30 \text { or } \mathrm { E } ( X ) = 10 | ||||||||||
| 9 \times \operatorname { Var } ( X ) = 36 \text { or } \operatorname { Var } ( X ) = 4 \end{aligned}\) | B1 B1 | 2.2a 2.2a | Used, stated or implied One of these, used, stated or implied | |||||||||
| Question | Answer | Mark | AO | Guidance | |||
| \multirow{5}{*}{} | \multirow{5}{*}{} | \multirow{5}{*}{} | \(\frac { 1 } { 1 } \left( n ^ { 2 } - 1 \right) = 4\) | M1 | 2.2a | \(n = 7\) only, no need for "reject -7" | \multirow[b]{2}{*}{Allow if \(\mathrm { E } ( 3 X + m )\) used rather than \(\mathrm { E } [ 3 ( X + m ) ]\)} |
| \(\mathrm { E } ( X - m ) = \frac { 1 } { 2 } ( n + 1 )\) | M1 | 3.1b | Use expectation of uniform, e.g. \(2 m + n + 1 = 20\). | ||||
| Alternative: \(\operatorname { Var } ( Y + m ) = \frac { 1 } { 12 } \left( n ^ { 2 } - 1 \right)\) | М1 A1 М1 | \(n = 7\) only Use expectation of uniform, e.g. \(2 m + n + 1 = 20\). | No need for "reject -7" | ||||
| \(10 - m = 4\) | М1 | 2.1 | Validly derive single equation for \(m\) | ||||
| \(m = 6\) | A1 [7] | 2.2a | \(m = 6\) only | NB: \(\operatorname { Var } = ( n - 1 ) ^ { 2 } / 12\) is from continuous uniform! | |||
| \multirow{4}{*}{3} | \multirow{4}{*}{(a)} | \multirow{4}{*}{} | \({ } ^ { 5 } C _ { 3 } \times { } ^ { 21 } C _ { 2 } + { } ^ { 5 } C _ { 4 } \times { } ^ { 21 } C _ { 1 } + 1 \quad [ = 2100 + 105 + 1 ]\) | M1dep | 3.1b | Any correct pair of \({ } ^ { n } C _ { r }\) s multiplied | Or \(1 - \mathrm { P } ( 0,1,2 ) = 1 - .9665\) |
| A1 | 1.1 | All terms correct | |||||
| \(\div { } ^ { 26 } C _ { 5 } [ = 65780 ]\) | *M1 | 1.1 | |||||
| \(\frac { 1103 } { 32890 }\) or \(0.0335 \ldots\) | A1 [4] | 3.2a | Awrt 0.0335 or any exact fraction | e.g. \(\frac { 2206 } { 65780 }\) or \(\frac { 264720 } { 7893600 }\) | |||
| Alternative: \(\frac { 5 } { 26 } \times \frac { 4 } { 25 } \times \frac { 3 } { 24 } \times \frac { 2 } { 23 } \times \frac { 1 } { 22 }\) | B1 | Must have 5 oe, e.g. \({ } ^ { 5 } C _ { 1 }\) | |||||
| 3 | (b) | (i) | \(\frac { 22 ! \times 5 ! } { 26 ! } \left( = \frac { 1 \times 2 \times 3 \times 4 \times 5 } { 23 \times 24 \times 25 \times 26 } = \frac { 120 } { 358800 } \right)\) | M1 A1 | 1.1 2.1 | Oe. Allow M1 for 21! instead of 22! Fully correct | \(\frac { 1 \times 2 \times 3 \times 4 \times 5 } { 22 \times 23 \times 24 \times 25 \times 26 } :\) M1 |
| Question | Answer | Mark | AO | Guidance | |||||
| \(= \frac { 1 } { 2990 } \quad\) AG | A1 [3] | 2.2a | Correctly obtain AG using exact method | Allow even if no working after \(22 ! \times 5 ! \div 26\) ! | |||||
| \multirow{8}{*}{3} | \multirow{8}{*}{(b)} | \multirow{8}{*}{(ii)} | 22 fences: 22 for [VVV] \(\times 21\) for [VV] | M1 | 3.1b | Correct strategy, allow \({ } ^ { 22 } C _ { 2 }\) for \({ } ^ { 22 } P _ { 2 }\) | |||
| Consonants arranged in 21! ways | M1 | 1.1 | At least one of these, no subtraction |
| |||||
| Vowels arranged in 5! ways ( \(= { } ^ { 5 } P _ { 3 } \times { } ^ { 2 } P _ { 2 }\) ) | A1 | 2.1 | Both correct | NB: \({ } ^ { 5 } C _ { 3 } \times 3 ! \times 2 ! = 5 !\) | |||||
| \(\begin{aligned} | \text { Product } \div 26 ! = \frac { 21 } { 2990 } | ||||||||
| \left( = 2.832 \times 10 ^ { 24 } \div 4.0329 \times 10 ^ { 26 } \right) \end{aligned}\) |
| 3.2a | Allow from calculator but must be exact fraction | ||||||
| М1 | 3.1b | Correct strategy, allow \(23 ! \times 2 ! \times 3 !\) | (Must subtract \(2 \times 1 / 2990\) as 23! method counts | |||||
| A1 | 2.1 | Correct \(\left( 5 ! = { } ^ { 5 } P _ { 3 } \times { } ^ { 2 } P _ { 2 } = \right. \left. { } ^ { 5 } C _ { 3 } \times 2 ! \times 3 ! \right)\) | |||||||
| M1 also for subtracting \(1 \times\) |
| ||||||||
| Answer is \(\frac { 21 } { 2990 }\) | A1 | 1.1 |
| ||||||