OCR Further Statistics 2021 June — Question 2 27 marks

Exam BoardOCR
ModuleFurther Statistics (Further Statistics)
Year2021
SessionJune
Marks27
TopicCombinations & Selection

2 The random variable \(X\) is equally likely to take any of the \(n\) integer values from \(m + 1\) to \(m + n\) inclusive. It is given that \(\mathrm { E } ( 3 X ) = 30\) and \(\operatorname { Var } ( 3 X ) = 36\). Determine the value of \(m\) and the value of \(n\). 326 cards are each labelled with a different letter of the alphabet, A to Z. The letters A, E, I, O and U are vowels.
  1. Five cards are selected at random without replacement. Determine the probability that the letters on at least three of the cards are vowels.
  2. All 26 cards are arranged in a line, in random order.
    1. Show that the probability that all the vowels are next to one another is \(\frac { 1 } { 2990 }\).
    2. Determine the probability that three of the vowels are next to each other, and the other two vowels are next to each other, but the five vowels are not all next to each other. A biased spinner has five sides, numbered 1 to 5 . Elmer spins the spinner repeatedly and counts the number of spins, \(X\), up to and including the first time that the number 2 appears. He carries out this experiment 100 times and records the frequency \(f\) with which each value of \(X\) is obtained. His results are shown in Table 1, together with the values of \(x f\). \begin{table}[h] \end{table}
      QuestionAnswerMarkAOGuidance
      \multirow[t]{8}{*}{1}\multirow{8}{*}{(a)}\(\mathrm { H } _ { 0 } : m _ { A } = m _ { B } , \mathrm { H } _ { 1 } : m _ { A } < m _ { B }\) where \(m _ { A }\) and \(m _ { B }\)B11.1OR: Median journey times equal, oe. Allow if \(m\) s used but not definedAllow "mean" or "average" only if "population" stated
      М11.1Find either \(\mathrm { P } ( \geq 219 )\) (218.5) or \(\mathrm { P } ( \leq 141 )\) (141.5)Use of 0.9559 is M0 here. For CV method see below
      Consider correct tail, either 219 or 141 ( \(R _ { m } = 219 , m ( m + n + 1 ) - R _ { m } = 141\) ) \(p = \Phi \left( \frac { 141.5 - 180 } { \sqrt { 510 } } \right) = 0.0441 \ldots\)
      BC
      М11.10.0421, 0.0401, 0.470 (no/wrong cc, \(\sqrt { }\) ): M1\(0.9559 > 0.9 :\) A1A1 (M1A1) \(0.9559 > 0.1 :\) A1A0 M0A0
      0.0441 < 0.1A1ft1.1Explicit comparison. FT on
      Alternative:
      CV \(180 - z \times \sqrt { 5 } 10\) 141 (141.5) used \(z = 1.282 \quad ( \mathrm { CV } = 151.05,151.058 .\). \(141.5 < 151.05 ( 85 ) \quad\) or \(218.5 > 208.95\)М1 M1 A1 A1Allow \(\sqrt { }\) errors Stated or implied CV and cc correct e.g. 141 < 150.55\(180 + 1.282 \sqrt { } 510\) etc is M0 unless 219 (218.5) used, in which case give M2(A1A1) E.g. \(219 > 209.45\)
      Reject \(\mathrm { H } _ { 0 }\). Significant evidence that route B takes longerM1ft A1ft [8]1.1 2.2bCorrect first conclusion Contextualised, not too definiteNeeds like-with-like, e.g. 0.9559 with 0.9
      SC Sum of A's ranks \(= 435 - 219 = 216\) used: B1B0 M0M1A0A1 M1A1 max 5/8
      Exx:
      \(\alpha\) : \(\quad \mathrm { H } _ { 0 }\) : Journey times are the same, \(\mathrm { H } _ { 1 }\) : journey times for \(B\) are higher:
      \(\beta\) : \(\quad \mathrm { H } _ { 0 }\) : No evidence that median journey times are different, etc:
      B0
      B0
      1(b)Must be a random sample (of all journeys) Or distributions must be same shape (necessary assumption for Wilcoxon ranksum test!)B1 [1]3.5bOr equivalent. Allow "(journeys) independent"Not "representative".
      2\(\begin{aligned}3 \mathrm { E } ( X ) = 30 \text { or } \mathrm { E } ( X ) = 10
      9 \times \operatorname { Var } ( X ) = 36 \text { or } \operatorname { Var } ( X ) = 4 \end{aligned}\)B1 B12.2a 2.2aUsed, stated or implied One of these, used, stated or implied
      QuestionAnswerMarkAOGuidance
      \multirow{5}{*}{}\multirow{5}{*}{}\multirow{5}{*}{}\(\frac { 1 } { 1 } \left( n ^ { 2 } - 1 \right) = 4\)M12.2a\(n = 7\) only, no need for "reject -7"\multirow[b]{2}{*}{Allow if \(\mathrm { E } ( 3 X + m )\) used rather than \(\mathrm { E } [ 3 ( X + m ) ]\)}
      \(\mathrm { E } ( X - m ) = \frac { 1 } { 2 } ( n + 1 )\)M13.1bUse expectation of uniform, e.g. \(2 m + n + 1 = 20\).
      Alternative: \(\operatorname { Var } ( Y + m ) = \frac { 1 } { 12 } \left( n ^ { 2 } - 1 \right)\)М1 A1 М1\(n = 7\) only Use expectation of uniform, e.g. \(2 m + n + 1 = 20\).No need for "reject -7"
      \(10 - m = 4\)М12.1Validly derive single equation for \(m\)
      \(m = 6\)A1 [7]2.2a\(m = 6\) onlyNB: \(\operatorname { Var } = ( n - 1 ) ^ { 2 } / 12\) is from continuous uniform!
      \multirow{4}{*}{3}\multirow{4}{*}{(a)}\multirow{4}{*}{}\({ } ^ { 5 } C _ { 3 } \times { } ^ { 21 } C _ { 2 } + { } ^ { 5 } C _ { 4 } \times { } ^ { 21 } C _ { 1 } + 1 \quad [ = 2100 + 105 + 1 ]\)M1dep3.1bAny correct pair of \({ } ^ { n } C _ { r }\) s multipliedOr \(1 - \mathrm { P } ( 0,1,2 ) = 1 - .9665\)
      A11.1All terms correct
      \(\div { } ^ { 26 } C _ { 5 } [ = 65780 ]\)*M11.1
      \(\frac { 1103 } { 32890 }\) or \(0.0335 \ldots\)A1 [4]3.2aAwrt 0.0335 or any exact fractione.g. \(\frac { 2206 } { 65780 }\) or \(\frac { 264720 } { 7893600 }\)
      Alternative: \(\frac { 5 } { 26 } \times \frac { 4 } { 25 } \times \frac { 3 } { 24 } \times \frac { 2 } { 23 } \times \frac { 1 } { 22 }\)B1Must have 5 oe, e.g. \({ } ^ { 5 } C _ { 1 }\)
      3(b)(i)\(\frac { 22 ! \times 5 ! } { 26 ! } \left( = \frac { 1 \times 2 \times 3 \times 4 \times 5 } { 23 \times 24 \times 25 \times 26 } = \frac { 120 } { 358800 } \right)\)M1 A11.1 2.1Oe. Allow M1 for 21! instead of 22! Fully correct\(\frac { 1 \times 2 \times 3 \times 4 \times 5 } { 22 \times 23 \times 24 \times 25 \times 26 } :\) M1
      QuestionAnswerMarkAOGuidance
      \(= \frac { 1 } { 2990 } \quad\) AGA1 [3]2.2aCorrectly obtain AG using exact methodAllow even if no working after \(22 ! \times 5 ! \div 26\) !
      \multirow{8}{*}{3}\multirow{8}{*}{(b)}\multirow{8}{*}{(ii)}22 fences: 22 for [VVV] \(\times 21\) for [VV]M13.1bCorrect strategy, allow \({ } ^ { 22 } C _ { 2 }\) for \({ } ^ { 22 } P _ { 2 }\)
      Consonants arranged in 21! waysM11.1At least one of these, no subtraction
      \(21 ! \times 3 ! \times 2 ! \div 26 !\) M0M1
      \(21 ! \times 3 ! \times 2 ! \times 22 \times 21\) : M2A0
      Vowels arranged in 5! ways ( \(= { } ^ { 5 } P _ { 3 } \times { } ^ { 2 } P _ { 2 }\) )A12.1Both correctNB: \({ } ^ { 5 } C _ { 3 } \times 3 ! \times 2 ! = 5 !\)
      \(\begin{aligned}\text { Product } \div 26 ! = \frac { 21 } { 2990 }
      \left( = 2.832 \times 10 ^ { 24 } \div 4.0329 \times 10 ^ { 26 } \right) \end{aligned}\)
      A1
      [4]
      3.2aAllow from calculator but must be exact fraction
      Alternative:
      Treat 21 consonants, [VVV] and [VV] as 23
      М13.1bCorrect strategy, allow \(23 ! \times 2 ! \times 3 !\)(Must subtract \(2 \times 1 / 2990\) as 23! method counts
      A12.1Correct \(\left( 5 ! = { } ^ { 5 } P _ { 3 } \times { } ^ { 2 } P _ { 2 } = \right. \left. { } ^ { 5 } C _ { 3 } \times 2 ! \times 3 ! \right)\)
      M1 also for subtracting \(1 \times\)
      [VVVVV] twice, once as [VVV][VV] and once as [VV][VVV])
      (11/1495 is M1A1M1A0)
      Answer is \(\frac { 21 } { 2990 }\)A11.1
      1/2990
      Final answer, exact fraction
      \begin{center} \begin{tabular}{ | l | l | l | l | l | l | }