OCR Further Statistics 2021 June — Question 1 28 marks

Exam BoardOCR
ModuleFurther Statistics (Further Statistics)
Year2021
SessionJune
Marks28
TopicLinear combinations of normal random variables
TypeMultiple stage process probability

1 The performance of a piece of music is being recorded. The piece consists of three sections, \(A , B\) and \(C\). The times, in seconds, taken to perform the three sections are normally distributed random variables with the following means and standard deviations. \end{table}
QuestionAnswerMarkAOGuidance
\multirow[t]{3}{*}{1}\multirow[t]{3}{*}{(a)}
\(A + B + C \sim \mathrm {~N} ( 701 , \ldots\)
.. 419)
M11.1aNormal, mean \(\mu _ { A } + \mu _ { B } + \mu _ { C }\)\multirow{3}{*}{}
A11.1Variance 419
\(\mathrm { P } ( > 720 ) = 0.176649\)A11.1Answer, 0.177 or better, www
\multirow[t]{2}{*}{1}\multirow[t]{2}{*}{(b)}\(2 A + B \sim \mathrm {~N} ( 701,757 )\)M11.1aNormal, same mean, \(4 \sigma _ { A } { } ^ { 2 } + \sigma _ { B } { } ^ { 2 }\)\multirow{2}{*}{}
\(\mathrm { P } ( > 720 ) = 0.244919\)A1 [2]1.1Answer, art 0.245
\multirow{2}{*}{2}\multirow{2}{*}{(a)}\(\frac { { } ^ { 8 } C _ { 3 } \times { } ^ { 20 } C _ { 5 } } { { } ^ { 28 } C _ { 8 } }\)M1 A13.1b 1.1(Product of two \({ } ^ { n } C _ { r }\) ) ÷ \({ } ^ { n } C _ { r }\) At least two \({ } ^ { n } C _ { r }\) correct\multirow[t]{2}{*}{Or \(\frac { 8 } { 28 } \times \frac { 7 } { 27 } \times \frac { 6 } { 26 } \times \frac { 20 } { 25 } \times \ldots \times \frac { 16 } { 21 } \times { } ^ { 8 } C _ { 3 } = 0.27934 \ldots\)}
\(\frac { 56 \times 15504 } { 3108105 } = 0.27934 \ldots\)A1 [3]1.1Any exact form or awrt 0.279
2(b)
× B × B × B × B × B × B × B × B x
GGG in one \(\mathrm { x } , \mathrm { G }\) in another: \(9 \times 8\) \(\div \frac { 12 ! } { 8 ! \times 4 ! }\) \(= \frac { 72 } { 495 } = \frac { 8 } { 55 } \text { or } 0.145 \ldots\)
M1 A13.1b 2.1
Or e.g. \(\frac { 10 ! } { 8 ! } - 2 \times 9\)
Divide by \({ } _ { 12 } \mathrm { C } _ { 4 }\) oe
Or, e.g. find \({ } _ { 12 } \mathrm { C } _ { 4 }\) - (\# (all separate) +\#(all together) \(+ \# ( 2,1,1 ) \times 3 +\) \#(2,2))
М11.1
A11.1
[4]
QuestionAnswerMarkAOGuidance
\multirow{7}{*}{3}\multirow{7}{*}{(a)}\(\mathrm { H } _ { 0 } : \mu = 700\)B21.1One error, e.g. no or wrongIgnore failure to define \(\mu\)
\(\mathrm { H } _ { 1 } : \mu < 700\) where \(\mu\) is the mean reaction1.1letter, \(\neq\), etc : B1here
\(\bar { x } = 607\)М13.3Find sample mean
\(z = - 1.822\) or \(p = 0.0342\) or \(\mathrm { CV } = 616.05 \ldots\)A13.4Correct \(z , p\) or CV
\(z < - 1.645\) or \(p < 0.05\) or \(607 < \mathrm { CV }\)A11.1Correct comparison
Reject \(\mathrm { H } _ { 0 }\)M1ft1.1Correct first conclusionNeeds correct method, like-
Significant evidence that mean reaction timesA1ft2.2bContext, not too definite (e.g. not "international athletes' reaction times are shorter"ft on their \(z , p\) or CV
3(b)(i)Uses more information (e.g. magnitudes of differences)B1 [1]2.4
\multirow{5}{*}{3}\multirow{5}{*}{(b)}\multirow{5}{*}{(ii)}\(\mathrm { H } _ { 0 } : m = 700 , \mathrm { H } _ { 1 } : m < 700\) where \(m\) is the median reaction time for all international athletesB12.5Same as in (i) but different letter or "median" stated
\(W _ { - } = 18\)
\(W _ { + } = 3\) so \(T = 3\)
For both, and \(T\) correct
\(n = 6 , \mathrm { CV } = 2\)A11.1Correct CV
Do not reject \(\mathrm { H } _ { 0 }\). Insufficient evidence that median reaction times of international athletes are shorterA1ft [6]2.2bIn context, not too definiteFT on their \(T\)
3(c)They use different assumptionsB1 [1]2.3Not "one is more accurate"
QuestionAnswerMarkAOGuidance
4(a)\(\begin{aligned}\int _ { 0 } ^ { a } x \frac { 2 x } { a ^ { 2 } } d x = 4
{ \left[ \frac { 2 x ^ { 3 } } { 3 a ^ { 2 } } \right] = 4 }
\frac { 2 } { 3 } a = 4 \Rightarrow a = 6 \end{aligned}\)
M1
B1
A1 [3]
3.1a
1.1
2.2a
4(b)
\(\mathrm { F } ( x ) = \frac { x ^ { 2 } } { 36 }\)
Let the CDF of \(M\) be \(\mathrm { H } ( m )\). Then \(\mathrm { H } ( m ) = \mathrm { P } (\) all observations less than \(m )\) \(= [ \mathrm { P } ( X \leqslant m ) ] ^ { 5 }\) \(= \left[ \frac { m ^ { 2 } } { 36 } \right] ^ { 5 }\)
\(\mathrm { H } ( m ) = \begin{cases} 0m < 0 ,
\frac { m ^ { 10 } } { 60466176 }0 \leq m \leq 6 ,
1m > 6 . \end{cases}\)
M1 A1ft
M1
M1
A1
A1
A1
A1
[8]
1.1
1.1
2.1
3.1a
2.2a
2.1
2.1
1.2
Find \(\mathrm { F } ( x ) ; = \frac { x ^ { 2 } } { a ^ { 2 } }\)
Correct basis for CDF of \(m\)
Correct function, any letter Range \(0 \leq m \leq 6\)
Letter not \(x\), and 0, 1 present
ft on their \(a\)
Allow
This paper (1 questions)
View full paper