Questions (30179 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP3 2007 June Q3
8 marks Standard +0.3
3 By using an integrating factor, find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + ( \tan x ) y = \sec x$$ given that \(y = 3\) when \(x = 0\).
AQA FP3 2007 June Q4
14 marks Challenging +1.2
4
  1. Show that \(( \cos \theta + \sin \theta ) ^ { 2 } = 1 + \sin 2 \theta\).
  2. A curve has cartesian equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 } = ( x + y ) ^ { 4 }$$ Given that \(r \geqslant 0\), show that the polar equation of the curve is $$r = 1 + \sin 2 \theta$$
  3. The curve with polar equation $$r = 1 + \sin 2 \theta , \quad - \pi \leqslant \theta \leqslant \pi$$ is shown in the diagram. \includegraphics[max width=\textwidth, alt={}, center]{f90167c3-2ffd-464a-b2d2-9f86a8d64887-3_389_611_1062_708}
    1. Find the two values of \(\theta\) for which \(r = 0\).
    2. Find the area of one of the loops.
AQA FP3 2007 June Q5
12 marks Challenging +1.2
5
  1. A differential equation is given by $$\left( x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = x ^ { 2 } + 1$$ Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } + x$$ transforms this differential equation into $$\frac { \mathrm { d } u } { \mathrm {~d} x } = \frac { 2 x u } { x ^ { 2 } - 1 }$$ (4 marks)
  2. Find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } = \frac { 2 x u } { x ^ { 2 } - 1 }$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$\left( x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = x ^ { 2 } + 1$$ giving your answer in the form \(y = \mathrm { g } ( x )\).
AQA FP3 2007 June Q6
15 marks Standard +0.8
6
  1. The function f is defined by $$\mathrm { f } ( x ) = \ln \left( 1 + \mathrm { e } ^ { x } \right)$$ Use Maclaurin's theorem to show that when \(\mathrm { f } ( x )\) is expanded in ascending powers of \(x\) :
    1. the first three terms are $$\ln 2 + \frac { 1 } { 2 } x + \frac { 1 } { 8 } x ^ { 2 }$$
    2. the coefficient of \(x ^ { 3 }\) is zero.
  2. Hence write down the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( \frac { 1 + \mathrm { e } ^ { x } } { 2 } \right)\).
  3. Use the series expansion $$\ln ( 1 + x ) = x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 } - \ldots$$ to write down the first three terms in the expansion, in ascending powers of \(x\), of \(\ln \left( 1 - \frac { x } { 2 } \right)\).
  4. Use your answers to parts (b) and (c) to find $$\lim _ { x \rightarrow 0 } \left[ \frac { \ln \left( \frac { 1 + \mathrm { e } ^ { x } } { 2 } \right) + \ln \left( 1 - \frac { x } { 2 } \right) } { x - \sin x } \right]$$
AQA FP3 2007 June Q7
7 marks Challenging +1.8
7
  1. Write down the value of $$\lim _ { x \rightarrow \infty } x \mathrm { e } ^ { - x }$$
  2. Use the substitution \(u = x \mathrm { e } ^ { - x } + 1\) to find \(\int \frac { \mathrm { e } ^ { - x } ( 1 - x ) } { x \mathrm { e } ^ { - x } + 1 } \mathrm {~d} x\).
  3. Hence evaluate \(\int _ { 1 } ^ { \infty } \frac { 1 - x } { x + \mathrm { e } ^ { x } } \mathrm {~d} x\), showing the limiting process used.
OCR FP3 Q3
6 marks Standard +0.8
3 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 8 y = \mathrm { e } ^ { 3 x }$$
OCR FP3 Q5
8 marks Challenging +1.2
5
  1. Use de Moivre's theorem to prove that $$\cos 6 \theta = 32 \cos ^ { 6 } \theta - 48 \cos ^ { 4 } \theta + 18 \cos ^ { 2 } \theta - 1$$
  2. Hence find the largest positive root of the equation $$64 x ^ { 6 } - 96 x ^ { 4 } + 36 x ^ { 2 } - 3 = 0$$ giving your answer in trigonometrical form.
OCR FP3 Q6
10 marks Standard +0.8
6 Lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations $$\frac { x - 3 } { 2 } = \frac { y - 4 } { - 1 } = \frac { z + 1 } { 1 } \quad \text { and } \quad \frac { x - 5 } { 4 } = \frac { y - 1 } { 3 } = \frac { z - 1 } { 2 }$$ respectively.
  1. Find the equation of the plane \(\Pi _ { 1 }\) which contains \(l _ { 1 }\) and is parallel to \(l _ { 2 }\), giving your answer in the form r.n \(= p\).
  2. Find the equation of the plane \(\Pi _ { 2 }\) which contains \(l _ { 2 }\) and is parallel to \(l _ { 1 }\), giving your answer in the form r.n \(= p\).
  3. Find the distance between the planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
  4. State the relationship between the answer to part (iii) and the lines \(l _ { 1 }\) and \(l _ { 2 }\).
  5. Show that \(\left( z - \mathrm { e } ^ { \mathrm { i } \phi } \right) \left( z - \mathrm { e } ^ { - \mathrm { i } \phi } \right) \equiv z ^ { 2 } - ( 2 \cos \phi ) z + 1\).
  6. Write down the seven roots of the equation \(z ^ { 7 } = 1\) in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\) and show their positions in an Argand diagram.
  7. Hence express \(z ^ { 7 } - 1\) as the product of one real linear factor and three real quadratic factors. 8
  8. Find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + y \tan x = \cos ^ { 3 } x$$ expressing \(y\) in terms of \(x\) in your answer.
  9. Find the particular solution for which \(y = 2\) when \(x = \pi\). 9 The set \(S\) consists of the numbers \(3 ^ { n }\), where \(n \in \mathbb { Z }\). ( \(\mathbb { Z }\) denotes the set of integers \(\{ 0 , \pm 1 , \pm 2 , \ldots \}\).)
  10. Prove that the elements of \(S\), under multiplication, form a commutative group \(G\). (You may assume that addition of integers is associative and commutative.)
  11. Determine whether or not each of the following subsets of \(S\), under multiplication, forms a subgroup of \(G\), justifying your answers.
    (a) The numbers \(3 ^ { 2 n }\), where \(n \in \mathbb { Z }\).
    (b) The numbers \(3 ^ { n }\), where \(n \in \mathbb { Z }\) and \(n \geqslant 0\).
    (c) The numbers \(3 ^ { \left( \pm n ^ { 2 } \right) }\), where \(n \in \mathbb { Z }\). 1 (a) A group \(G\) of order 6 has the combination table shown below.
    \(e\)\(a\)\(b\)\(p\)\(q\)\(r\)
    \(e\)\(e\)\(a\)\(b\)\(p\)\(q\)\(r\)
    \(a\)\(a\)\(b\)\(e\)\(r\)\(p\)\(q\)
    \(b\)\(b\)\(e\)\(a\)\(q\)\(r\)\(p\)
    \(p\)\(p\)\(q\)\(r\)\(e\)\(a\)\(b\)
    \(q\)\(q\)\(r\)\(p\)\(b\)\(e\)\(a\)
    \(r\)\(r\)\(p\)\(q\)\(a\)\(b\)\(e\)
  12. State, with a reason, whether or not \(G\) is commutative.
  13. State the number of subgroups of \(G\) which are of order 2 .
  14. List the elements of the subgroup of \(G\) which is of order 3 .
    (b) A multiplicative group \(H\) of order 6 has elements \(e , c , c ^ { 2 } , c ^ { 3 } , c ^ { 4 } , c ^ { 5 }\), where \(e\) is the identity. Write down the order of each of the elements \(c ^ { 3 } , c ^ { 4 }\) and \(c ^ { 5 }\). 2 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 8 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 16 y = 4 x$$ 3 Two fixed points, \(A\) and \(B\), have position vectors \(\mathbf { a }\) and \(\mathbf { b }\) relative to the origin \(O\), and a variable point \(P\) has position vector \(\mathbf { r }\).
  15. Give a geometrical description of the locus of \(P\) when \(\mathbf { r }\) satisfies the equation \(\mathbf { r } = \lambda \mathbf { a }\), where \(0 \leqslant \lambda \leqslant 1\).
  16. Given that \(P\) is a point on the line \(A B\), use a property of the vector product to explain why \(( \mathbf { r } - \mathbf { a } ) \times ( \mathbf { r } - \mathbf { b } ) = \mathbf { 0 }\).
  17. Give a geometrical description of the locus of \(P\) when \(\mathbf { r }\) satisfies the equation \(\mathbf { r } \times ( \mathbf { a } - \mathbf { b } ) = \mathbf { 0 }\). 4 The integrals \(C\) and \(S\) are defined by $$C = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \cos 3 x \mathrm {~d} x \quad \text { and } \quad S = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \mathrm { e } ^ { 2 x } \sin 3 x \mathrm {~d} x$$ By considering \(C + \mathrm { i } S\) as a single integral, show that $$C = - \frac { 1 } { 13 } \left( 2 + 3 \mathrm { e } ^ { \pi } \right)$$ and obtain a similar expression for \(S\).
    (You may assume that the standard result for \(\int \mathrm { e } ^ { k x } \mathrm {~d} x\) remains true when \(k\) is a complex constant, so that \(\left. \int \mathrm { e } ^ { ( a + \mathrm { i } b ) x } \mathrm {~d} x = \frac { 1 } { a + \mathrm { i } b } \mathrm { e } ^ { ( a + \mathrm { i } b ) x } .\right)\) 5
  18. Find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { y } { x } = \sin 2 x$$ expressing \(y\) in terms of \(x\) in your answer. In a particular case, it is given that \(y = \frac { 2 } { \pi }\) when \(x = \frac { 1 } { 4 } \pi\).
  19. Find the solution of the differential equation in this case.
  20. Write down a function to which \(y\) approximates when \(x\) is large and positive. 6 A tetrahedron \(A B C D\) is such that \(A B\) is perpendicular to the base \(B C D\). The coordinates of the points \(A , C\) and \(D\) are \(( - 1 , - 7,2 ) , ( 5,0,3 )\) and \(( - 1,3,3 )\) respectively, and the equation of the plane \(B C D\) is \(x + 2 y - 2 z = - 1\).
  21. Find, in either order, the coordinates of \(B\) and the length of \(A B\).
  22. Find the acute angle between the planes \(A C D\) and \(B C D\).
  23. (a) Verify, without using a calculator, that \(\theta = \frac { 1 } { 8 } \pi\) is a solution of the equation \(\sin 6 \theta = \sin 2 \theta\).
    (b) By sketching the graphs of \(y = \sin 6 \theta\) and \(y = \sin 2 \theta\) for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\), or otherwise, find the other solution of the equation \(\sin 6 \theta = \sin 2 \theta\) in the interval \(0 < \theta < \frac { 1 } { 2 } \pi\).
  24. Use de Moivre's theorem to prove that $$\sin 6 \theta \equiv \sin 2 \theta \left( 16 \cos ^ { 4 } \theta - 16 \cos ^ { 2 } \theta + 3 \right)$$
  25. Hence show that one of the solutions obtained in part (i) satisfies \(\cos ^ { 2 } \theta = \frac { 1 } { 4 } ( 2 - \sqrt { 2 } )\), and justify which solution it is. \section*{Jan 2008} 8 Groups \(A , B , C\) and \(D\) are defined as follows:
    A: the set of numbers \(\{ 2,4,6,8 \}\) under multiplication modulo 10 , \(B\) : the set of numbers \(\{ 1,5,7,11 \}\) under multiplication modulo 12 , \(C\) : the set of numbers \(\left\{ 2 ^ { 0 } , 2 ^ { 1 } , 2 ^ { 2 } , 2 ^ { 3 } \right\}\) under multiplication modulo 15, \(D\) : the set of numbers \(\left\{ \frac { 1 + 2 m } { 1 + 2 n } \right.\), where \(m\) and \(n\) are integers \(\}\) under multiplication.
  26. Write down the identity element for each of groups \(A , B , C\) and \(D\).
  27. Determine in each case whether the groups $$\begin{aligned} & A \text { and } B , \\ & B \text { and } C , \\ & A \text { and } C \end{aligned}$$ are isomorphic or non-isomorphic. Give sufficient reasons for your answers.
  28. Prove the closure property for group \(D\).
  29. Elements of the set \(\left\{ \frac { 1 + 2 m } { 1 + 2 n } \right.\), where \(m\) and \(n\) are integers \(\}\) are combined under addition. State which of the four basic group properties are not satisfied. (Justification is not required.) \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }1 (a) A cyclic multiplicative group \(G\) has order 12. The identity element of \(G\) is \(e\) and another element is \(r\), with order 12.
  30. Write down, in terms of \(e\) and \(r\), the elements of the subgroup of \(G\) which is of order 4.
  31. Explain briefly why there is no proper subgroup of \(G\) in which two of the elements are \(e\) and \(r\).
    (b) A group \(H\) has order \(m n p\), where \(m , n\) and \(p\) are prime. State the possible orders of proper subgroups of \(H\). 2 Find the acute angle between the line with equation \(\mathbf { r } = 2 \mathbf { i } + 3 \mathbf { k } + t ( \mathbf { i } + 4 \mathbf { j } - \mathbf { k } )\) and the plane with equation \(\mathbf { r } = 2 \mathbf { i } + 3 \mathbf { k } + \lambda ( \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k } ) + \mu ( \mathbf { i } + 2 \mathbf { j } - \mathbf { k } )\). 3
  32. Use the substitution \(z = x + y\) to show that the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x + y + 3 } { x + y - 1 }$$ may be written in the form \(\frac { \mathrm { d } z } { \mathrm {~d} x } = \frac { 2 ( z + 1 ) } { z - 1 }\).
  33. Hence find the general solution of the differential equation (A). 4
  34. By expressing \(\cos \theta\) in terms of \(\mathrm { e } ^ { \mathrm { i } \theta }\) and \(\mathrm { e } ^ { - \mathrm { i } \theta }\), show that $$\cos ^ { 5 } \theta \equiv \frac { 1 } { 16 } ( \cos 5 \theta + 5 \cos 3 \theta + 10 \cos \theta )$$
  35. Hence solve the equation \(\cos 5 \theta + 5 \cos 3 \theta + 9 \cos \theta = 0\) for \(0 \leqslant \theta \leqslant \pi\). 5 Two lines have equations $$\frac { x - k } { 2 } = \frac { y + 1 } { - 5 } = \frac { z - 1 } { - 3 } \quad \text { and } \quad \frac { x - k } { 1 } = \frac { y + 4 } { - 4 } = \frac { z } { - 2 }$$ where \(k\) is a constant.
  36. Show that, for all values of \(k\), the lines intersect, and find their point of intersection in terms of \(k\).
  37. For the case \(k = 1\), find the equation of the plane in which the lines lie, giving your answer in the form \(a x + b y + c z = d\). 6 The operation â—‹ on real numbers is defined by \(a \circ b = a | b |\).
  38. Show that ∘ is not commutative.
  39. Prove that ∘ is associative.
  40. Determine whether the set of real numbers, under the operation ∘, forms a group. \section*{June 2008}
OCR FP3 Q9
12 marks Challenging +1.2
9 The set \(S\) consists of the numbers \(3 ^ { n }\), where \(n \in \mathbb { Z }\). ( \(\mathbb { Z }\) denotes the set of integers \(\{ 0 , \pm 1 , \pm 2 , \ldots \}\).)
  1. Prove that the elements of \(S\), under multiplication, form a commutative group \(G\). (You may assume that addition of integers is associative and commutative.)
  2. Determine whether or not each of the following subsets of \(S\), under multiplication, forms a subgroup of \(G\), justifying your answers.
    (a) The numbers \(3 ^ { 2 n }\), where \(n \in \mathbb { Z }\).
    (b) The numbers \(3 ^ { n }\), where \(n \in \mathbb { Z }\) and \(n \geqslant 0\).
    (c) The numbers \(3 ^ { \left( \pm n ^ { 2 } \right) }\), where \(n \in \mathbb { Z }\). 1 (a) A group \(G\) of order 6 has the combination table shown below. \(G\) and \(H\) are the non-cyclic groups of order 4 and 6 respectively.
  3. Construct two tables, similar to the one above, to show the number of elements with each possible order for the groups \(G\) and \(H\). Hence explain why there are no non-cyclic proper subgroups of \(Q\). 7 Three planes \(\Pi _ { 1 } , \Pi _ { 2 }\) and \(\Pi _ { 3 }\) have equations $$\mathbf { r } . ( \mathbf { i } + \mathbf { j } - 2 \mathbf { k } ) = 5 , \quad \mathbf { r } . ( \mathbf { i } - \mathbf { j } + 3 \mathbf { k } ) = 6 , \quad \mathbf { r } . ( \mathbf { i } + 5 \mathbf { j } - 12 \mathbf { k } ) = 12 ,$$ respectively. Planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) intersect in a line \(l\); planes \(\Pi _ { 2 }\) and \(\Pi _ { 3 }\) intersect in a line \(m\).
  4. Show that \(l\) and \(m\) are in the same direction.
  5. Write down what you can deduce about the line of intersection of planes \(\Pi _ { 1 }\) and \(\Pi _ { 3 }\).
  6. By considering the cartesian equations of \(\Pi _ { 1 } , \Pi _ { 2 }\) and \(\Pi _ { 3 }\), or otherwise, determine whether or not the three planes have a common line of intersection. 8 The operation \(*\) is defined on the elements \(( x , y )\), where \(x , y \in \mathbb { R }\), by $$( a , b ) * ( c , d ) = ( a c , a d + b ) .$$ It is given that the identity element is \(( 1,0 )\).
  7. Prove that \(*\) is associative.
  8. Find all the elements which commute with \(( 1,1 )\).
  9. It is given that the particular element \(( m , n )\) has an inverse denoted by \(( p , q )\), where $$( m , n ) * ( p , q ) = ( p , q ) * ( m , n ) = ( 1,0 ) .$$ Find \(( p , q )\) in terms of \(m\) and \(n\).
  10. Find all self-inverse elements.
  11. Give a reason why the elements \(( x , y )\), under the operation \(*\), do not form a group.
OCR MEI FP3 2015 June Q1
24 marks Standard +0.8
1 The point A has coordinates \(( 2,5,4 )\) and the line BC has equation $$\mathbf { r } = \left( \begin{array} { c } 8 \\ 25 \\ 43 \end{array} \right) + \lambda \left( \begin{array} { c } 4 \\ 15 \\ 25 \end{array} \right)$$ You are given that \(\mathrm { AB } = \mathrm { AC } = 15\).
  1. Show that the coordinates of one of the points B and C are (4, 10, 18). Find the coordinates of the other point. These points are B and C respectively.
  2. Find the equation of the plane ABC in cartesian form.
  3. Show that the plane containing the line BC and perpendicular to the plane ABC has equation \(5 y - 3 z + 4 = 0\). The point D has coordinates \(( 1,1,3 )\).
  4. Show that \(| \overrightarrow { B C } \times \overrightarrow { A D } | = \sqrt { 7667 }\) and hence find the shortest distance between the lines \(B C\) and \(A D\).
  5. Find the volume of the tetrahedron ABCD .
OCR MEI FP3 2015 June Q2
24 marks Challenging +1.2
2 A surface has equation \(z = 3 x ^ { 2 } - 12 x y + 2 y ^ { 3 } + 60\).
  1. Show that the point \(\mathrm { A } ( 8,4 , - 4 )\) is a stationary point on the surface. Find the coordinates of the other stationary point, B , on this surface.
  2. A point P with coordinates \(( 8 + h , 4 + k , p )\) lies on the surface.
    (A) Show that \(p = - 4 + 3 ( h - 2 k ) ^ { 2 } + 2 k ^ { 2 } ( 6 + k )\).
    (B) Deduce that the stationary point A is a local minimum.
    (C) By considering sections of the surface near to B in each of the planes \(x = 0\) and \(y = 0\), investigate the nature of the stationary point B .
  3. The point Q with coordinates \(( 1,1,53 )\) lies on the surface. Show that the equation of the tangent plane at Q is $$6 x + 6 y + z = 65$$
  4. The tangent plane at the point R has equation \(6 x + 6 y + z = \lambda\) where \(\lambda \neq 65\). Find the coordinates of R .
OCR MEI FP3 2015 June Q3
24 marks Challenging +1.8
3 Fig. 3 shows an ellipse with parametric equations \(x = a \cos \theta , y = b \sin \theta\), for \(0 \leqslant \theta \leqslant 2 \pi\), where \(0 < b \leqslant a\).
The curve meets the positive \(x\)-axis at A and the positive \(y\)-axis at B . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0e032f23-0549-4adc-bfae-59333108fab5-4_668_1255_477_404} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Show that the radius of curvature at A is \(\frac { b ^ { 2 } } { a }\) and find the corresponding centre of curvature.
  2. Write down the radius of curvature and the centre of curvature at B .
  3. Find the relationship between \(a\) and \(b\) if the radius of curvature at B is equal to the radius of curvature at A . What does this mean geometrically?
  4. Show that the arc length from A to B can be expressed as $$b \int _ { 0 } ^ { \frac { \pi } { 2 } } \sqrt { 1 + \lambda ^ { 2 } \sin ^ { 2 } \theta } d \theta$$ where \(\lambda ^ { 2 }\) is to be determined in terms of \(a\) and \(b\).
    Evaluate this integral in the case \(a = b\) and comment on your answer.
  5. Find the cartesian equation of the evolute of the ellipse.
OCR MEI FP3 2015 June Q4
24 marks Challenging +1.8
4 M is the set of all \(2 \times 2\) matrices \(\mathrm { m } ( a , b )\) where \(a\) and \(b\) are rational numbers and $$\mathrm { m } ( a , b ) = \left( \begin{array} { l l } a & b \\ 0 & \frac { 1 } { a } \end{array} \right) , a \neq 0$$
  1. Show that under matrix multiplication M is a group. You may assume associativity of matrix multiplication.
  2. Determine whether the group is commutative. The set \(\mathrm { N } _ { k }\) consists of all \(2 \times 2\) matrices \(\mathrm { m } ( k , b )\) where \(k\) is a fixed positive integer and \(b\) can take any integer value.
  3. Prove that \(\mathrm { N } _ { k }\) is closed under matrix multiplication if and only if \(k = 1\). Now consider the set P consisting of the matrices \(\mathrm { m } ( 1,0 ) , \mathrm { m } ( 1,1 ) , \mathrm { m } ( 1,2 )\) and \(\mathrm { m } ( 1,3 )\). The elements of P are combined using matrix multiplication but with arithmetic carried out modulo 4 .
  4. Show that \(( \mathrm { m } ( 1,1 ) ) ^ { 2 } = \mathrm { m } ( 1,2 )\).
  5. Construct the group combination table for P . The group R consists of the set \(\{ e , a , b , c \}\) combined under the operation *. The identity element is \(e\), and elements \(a , b\) and \(c\) are such that $$a ^ { * } a = b ^ { * } b = c ^ { * } c \quad \text { and } \quad a ^ { * } c = c ^ { * } a = b$$
  6. Determine whether R is isomorphic to P . Option 5: Markov chains \section*{This question requires the use of a calculator with the ability to handle matrices.}
OCR MEI FP3 2015 June Q5
24 marks Standard +0.8
5 An inspector has three factories, A, B, C, to check. He spends each day in one of the factories. He chooses the factory to visit on a particular day according to the following rules.
  • If he is in A one day, then the next day he will never choose A but he is equally likely to choose B or C .
  • If he is in B one day, then the next day he is equally likely to choose \(\mathrm { A } , \mathrm { B }\) or C .
  • If he is in C one day, then the next day he will never choose A but he is equally likely to choose B or C .
    1. Write down the transition matrix, \(\mathbf { P }\).
    2. On Day 1 the inspector chooses A.
      (A) Find the probability that he will choose A on Day 4.
      (B) Find the probability that the factory he chooses on Day 7 is the same factory that he chose on Day 2.
    3. Find the equilibrium probabilities and explain what they mean.
The inspector is not satisfied with the number of times he visits A so he changes the rules as follows.
  • If he is in A one day, then the next day he will choose \(\mathrm { A } , \mathrm { B } , \mathrm { C }\), with probabilities \(0.8,0.1,0.1\), respectively.
  • If he is in B or C one day, then the probabilities for choosing the factory the next day remain as before.
  • Write down the new transition matrix, \(\mathbf { Q }\), and find the new equilibrium probabilities.
  • On a particular day, the inspector visits factory A. Find the expected number of consecutive further days on which he will visit factory A.
Still not satisfied, the inspector changes the rules as follows.
  • If he is in A one day, then the next day he will choose \(\mathrm { A } , \mathrm { B } , \mathrm { C }\), with probabilities \(1,0,0\), respectively.
  • If he is in B or C one day, then the probabilities for choosing the factory the next day remain as before.
The new transition matrix is \(\mathbf { R }\).
  • On Day 15 he visits C . Find the first subsequent day for which the probability that he visits B is less than 0.1.
  • Show that in this situation there is an absorbing state, explaining what this means. \section*{END OF QUESTION PAPER}
  • AQA D1 Q3
    Easy -1.8
    3
      1. State the number of edges in a minimum spanning tree of a network with 10 vertices.
      2. State the number of edges in a minimum spanning tree of a network with \(n\) vertices.
    1. The following network has 10 vertices: \(A , B , \ldots , J\). The numbers on each edge represent the distances, in miles, between pairs of vertices. \includegraphics[max width=\textwidth, alt={}, center]{194d16e0-8e05-45c0-8948-99808440ed2a-004_1294_1118_785_445}
      1. Use Kruskal's algorithm to find the minimum spanning tree for the network.
      2. State the length of your spanning tree.
      3. Draw your spanning tree.
    AQA D1 Q4
    Moderate -0.3
    4 The diagram shows the feasible region of a linear programming problem. \includegraphics[max width=\textwidth, alt={}, center]{194d16e0-8e05-45c0-8948-99808440ed2a-005_1349_1395_408_294}
    1. On the feasible region, find:
      1. the maximum value of \(2 x + 3 y\);
      2. the maximum value of \(3 x + 2 y\);
      3. the minimum value of \(- 2 x + y\).
    2. Find the 5 inequalities that define the feasible region.
    AQA D1 Q5
    Moderate -0.8
    5 [Figure 1, printed on the insert, is provided for use in this question.]
    The network shows the times, in minutes, to travel between 10 towns. \includegraphics[max width=\textwidth, alt={}, center]{194d16e0-8e05-45c0-8948-99808440ed2a-006_412_1561_568_233}
    1. Use Dijkstra's algorithm on Figure 1 to find the minimum time to travel from \(A\) to \(J\).
      (6 marks)
    2. State the corresponding route.
      (1 mark)
    AQA D1 Q7
    Moderate -0.8
    7 Stella is visiting Tijuana on a day trip. The diagram shows the lengths, in metres, of the roads near the bus station. \includegraphics[max width=\textwidth, alt={}, center]{194d16e0-8e05-45c0-8948-99808440ed2a-007_1539_1162_495_424} Stella leaves the bus station at \(A\). She decides to walk along all of the roads at least once before returning to \(A\).
    1. Explain why it is not possible to start from \(A\), travel along each road only once and return to \(A\).
    2. Find the length of an optimal 'Chinese postman' route around the network, starting and finishing at \(A\).
    3. At each of the 9 places \(B , C , \ldots , J\), there is a statue. Find the number of times that Stella will pass a statue if she follows her optimal route.
    AQA D1 2006 January Q1
    7 marks Moderate -0.8
    1
    1. Draw a bipartite graph representing the following adjacency matrix.
      (2 marks)
      \(\boldsymbol { U }\)\(V\)\(\boldsymbol { W }\)\(\boldsymbol { X }\)\(\boldsymbol { Y }\)\(\boldsymbol { Z }\)
      \(\boldsymbol { A }\)101010
      \(\boldsymbol { B }\)010100
      \(\boldsymbol { C }\)010001
      \(\boldsymbol { D }\)000100
      \(\boldsymbol { E }\)001011
      \(\boldsymbol { F }\)000110
    2. Given that initially \(A\) is matched to \(W , B\) is matched to \(X , C\) is matched to \(V\), and \(E\) is matched to \(Y\), use the alternating path algorithm, from this initial matching, to find a complete matching. List your complete matching.
    AQA D1 2006 January Q2
    5 marks Easy -1.2
    2 Use the quicksort algorithm to rearrange the following numbers into ascending order. Indicate clearly the pivots that you use. $$\begin{array} { l l l l l l l l } 18 & 23 & 12 & 7 & 26 & 19 & 16 & 24 \end{array}$$
    AQA D1 2006 January Q3
    15 marks Easy -2.0
    3
      1. State the number of edges in a minimum spanning tree of a network with 10 vertices.
      2. State the number of edges in a minimum spanning tree of a network with \(n\) vertices.
    1. The following network has 10 vertices: \(A , B , \ldots , J\). The numbers on each edge represent the distances, in miles, between pairs of vertices. \includegraphics[max width=\textwidth, alt={}, center]{4a186c87-5f84-4ec3-8cc3-a0ed8721b040-03_1294_1118_785_445}
      1. Use Kruskal's algorithm to find the minimum spanning tree for the network.
      2. State the length of your spanning tree.
      3. Draw your spanning tree.
    AQA D1 2006 January Q4
    8 marks Moderate -0.8
    4 The diagram shows the feasible region of a linear programming problem. \includegraphics[max width=\textwidth, alt={}, center]{4a186c87-5f84-4ec3-8cc3-a0ed8721b040-04_1349_1395_408_294}
    1. On the feasible region, find:
      1. the maximum value of \(2 x + 3 y\);
      2. the maximum value of \(3 x + 2 y\);
      3. the minimum value of \(- 2 x + y\).
    2. Find the 5 inequalities that define the feasible region.
    AQA D1 2006 January Q5
    7 marks Moderate -0.8
    5 [Figure 1, printed on the insert, is provided for use in this question.]
    The network shows the times, in minutes, to travel between 10 towns. \includegraphics[max width=\textwidth, alt={}, center]{4a186c87-5f84-4ec3-8cc3-a0ed8721b040-05_412_1561_568_233}
    1. Use Dijkstra's algorithm on Figure 1 to find the minimum time to travel from \(A\) to \(J\).
      (6 marks)
    2. State the corresponding route.
      (1 mark)
    AQA D1 2006 January Q6
    7 marks Easy -1.8
    6 Two algorithms are shown. \section*{Algorithm 1}
    Line 10Input \(P\)
    Line 20Input \(R\)
    Line 30Input \(T\)
    Line 40Let \(I = ( P * R * T ) / 100\)
    Line 50Let \(A = P + I\)
    Line 60Let \(M = A / ( 12 * T )\)
    Line 70Print \(M\)
    Line 80Stop
    \section*{Algorithm 2}
    Line 10Input \(P\)
    Line 20Input \(R\)
    Line 30Input \(T\)
    Line 40Let \(A = P\)
    Line 50\(K = 0\)
    Line 60Let \(K = K + 1\)
    Line 70Let \(I = ( A * R ) / 100\)
    Line 80Let \(A = A + I\)
    Line 90If \(K < T\) then goto Line 60
    Line 100Let \(M = A / ( 12 * T )\)
    Line 110Print \(M\)
    Line 120Stop
    In the case where the input values are \(P = 400 , R = 5\) and \(T = 3\) :
    1. trace Algorithm 1;
    2. trace Algorithm 2.
    AQA D1 2006 January Q7
    13 marks Moderate -0.5
    7 Stella is visiting Tijuana on a day trip. The diagram shows the lengths, in metres, of the roads near the bus station. \includegraphics[max width=\textwidth, alt={}, center]{4a186c87-5f84-4ec3-8cc3-a0ed8721b040-06_1539_1162_495_424} Stella leaves the bus station at \(A\). She decides to walk along all of the roads at least once before returning to \(A\).
    1. Explain why it is not possible to start from \(A\), travel along each road only once and return to \(A\).
    2. Find the length of an optimal 'Chinese postman' route around the network, starting and finishing at \(A\).
    3. At each of the 9 places \(B , C , \ldots , J\), there is a statue. Find the number of times that Stella will pass a statue if she follows her optimal route.