AQA FP3 2007 June — Question 5

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2007
SessionJune
TopicSecond order differential equations

5
  1. A differential equation is given by $$\left( x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = x ^ { 2 } + 1$$ Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x } + x$$ transforms this differential equation into $$\frac { \mathrm { d } u } { \mathrm {~d} x } = \frac { 2 x u } { x ^ { 2 } - 1 }$$ (4 marks)
  2. Find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } = \frac { 2 x u } { x ^ { 2 } - 1 }$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$\left( x ^ { 2 } - 1 \right) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = x ^ { 2 } + 1$$ giving your answer in the form \(y = \mathrm { g } ( x )\).