AQA FP3 2007 June — Question 4

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2007
SessionJune
TopicPolar coordinates

4
  1. Show that \(( \cos \theta + \sin \theta ) ^ { 2 } = 1 + \sin 2 \theta\).
  2. A curve has cartesian equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 } = ( x + y ) ^ { 4 }$$ Given that \(r \geqslant 0\), show that the polar equation of the curve is $$r = 1 + \sin 2 \theta$$
  3. The curve with polar equation $$r = 1 + \sin 2 \theta , \quad - \pi \leqslant \theta \leqslant \pi$$ is shown in the diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{f90167c3-2ffd-464a-b2d2-9f86a8d64887-3_389_611_1062_708}
    1. Find the two values of \(\theta\) for which \(r = 0\).
    2. Find the area of one of the loops.