AQA FP3 2007 June — Question 6

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2007
SessionJune
TopicTaylor series
TypeMaclaurin series for ln(exponential expressions)

6
  1. The function f is defined by $$\mathrm { f } ( x ) = \ln \left( 1 + \mathrm { e } ^ { x } \right)$$ Use Maclaurin's theorem to show that when \(\mathrm { f } ( x )\) is expanded in ascending powers of \(x\) :
    1. the first three terms are $$\ln 2 + \frac { 1 } { 2 } x + \frac { 1 } { 8 } x ^ { 2 }$$
    2. the coefficient of \(x ^ { 3 }\) is zero.
  2. Hence write down the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( \frac { 1 + \mathrm { e } ^ { x } } { 2 } \right)\).
  3. Use the series expansion $$\ln ( 1 + x ) = x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 } - \ldots$$ to write down the first three terms in the expansion, in ascending powers of \(x\), of \(\ln \left( 1 - \frac { x } { 2 } \right)\).
  4. Use your answers to parts (b) and (c) to find $$\lim _ { x \rightarrow 0 } \left[ \frac { \ln \left( \frac { 1 + \mathrm { e } ^ { x } } { 2 } \right) + \ln \left( 1 - \frac { x } { 2 } \right) } { x - \sin x } \right]$$