OCR MEI FP3 2015 June — Question 4

Exam BoardOCR MEI
ModuleFP3 (Further Pure Mathematics 3)
Year2015
SessionJune
TopicGroups

4 M is the set of all \(2 \times 2\) matrices \(\mathrm { m } ( a , b )\) where \(a\) and \(b\) are rational numbers and $$\mathrm { m } ( a , b ) = \left( \begin{array} { l l } a & b
0 & \frac { 1 } { a } \end{array} \right) , a \neq 0$$
  1. Show that under matrix multiplication M is a group. You may assume associativity of matrix multiplication.
  2. Determine whether the group is commutative. The set \(\mathrm { N } _ { k }\) consists of all \(2 \times 2\) matrices \(\mathrm { m } ( k , b )\) where \(k\) is a fixed positive integer and \(b\) can take any integer value.
  3. Prove that \(\mathrm { N } _ { k }\) is closed under matrix multiplication if and only if \(k = 1\). Now consider the set P consisting of the matrices \(\mathrm { m } ( 1,0 ) , \mathrm { m } ( 1,1 ) , \mathrm { m } ( 1,2 )\) and \(\mathrm { m } ( 1,3 )\). The elements of P are combined using matrix multiplication but with arithmetic carried out modulo 4 .
  4. Show that \(( \mathrm { m } ( 1,1 ) ) ^ { 2 } = \mathrm { m } ( 1,2 )\).
  5. Construct the group combination table for P . The group R consists of the set \(\{ e , a , b , c \}\) combined under the operation *. The identity element is \(e\), and elements \(a , b\) and \(c\) are such that $$a ^ { * } a = b ^ { * } b = c ^ { * } c \quad \text { and } \quad a ^ { * } c = c ^ { * } a = b$$
  6. Determine whether R is isomorphic to P . Option 5: Markov chains \section*{This question requires the use of a calculator with the ability to handle matrices.}