Questions M2 (1391 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI M2 2015 June Q4
4
  1. Two discs, P of mass 4 kg and Q of mass 5 kg , are sliding along the same line on a smooth horizontal plane when they collide. The velocity of P before the collision and the velocity of Q after the collision are shown in Fig. 4. P loses \(\frac { 5 } { 9 }\) of its kinetic energy in the collision. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{71d839d8-12ca-4806-8f74-c572e7e21891-5_294_899_390_584} \captionsetup{labelformat=empty} \caption{Fig. 4}
    \end{figure}
    1. Show that after the collision P has a velocity of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the opposite direction to its original motion. While colliding, the discs are in contact for \(\frac { 1 } { 5 } \mathrm {~s}\).
    2. Find the impulse on P in the collision and the average force acting on the discs.
    3. Find the velocity of Q before the collision and the coefficient of restitution between the two discs.
  2. A particle is projected from a point 2.5 m above a smooth horizontal plane. Its initial velocity is \(5.95 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle \(\theta\) below the horizontal, where \(\sin \theta = \frac { 15 } { 17 }\). The coefficient of restitution between the particle and the plane is \(\frac { 4 } { 5 }\).
    1. Show that, after bouncing off the plane, the greatest height reached by the particle is 2.5 m .
    2. Calculate the horizontal distance between the two points at which the particle is 2.5 m above the plane.
OCR MEI M2 2016 June Q1
1
  1. Two model railway trucks are moving freely on a straight horizontal track when they are in a direct collision. The trucks are P of mass 0.5 kg and Q of mass 0.75 kg . They are initially travelling in the same direction. Just before they collide P has a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and Q has a speed of \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), as shown in Fig. 1.1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-2_263_640_484_715} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure}
    1. Suppose that the speed of P is halved in the collision and that its direction of motion is not changed. Find the speed of Q immediately after the collision and find the coefficient of restitution.
    2. Show that it is not possible for both the speed of P to be halved in the collision and its direction of motion to be reversed. Both of the model trucks have flat horizontal tops. They are each travelling at the speeds they had immediately after the collision. Part of the mass of Q is a small object of mass 0.1 kg at rest at the edge of the top of Q nearest P . The object falls off, initially with negligible velocity relative to Q .
    3. Determine the speed of Q immediately after the object falls off it, making your reasoning clear. Part of the mass of P is an object of mass 0.05 kg that is fired horizontally from the top of P , parallel to and in the opposite direction to the motion of P . Immediately after the object is fired, it has a speed of \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) relative to P .
    4. Determine the speed of P immediately after the object has been fired from it.
  2. The velocities of a small object immediately before and after an elastic collision with a horizontal plane are shown in Fig. 1.2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-2_172_741_1987_644} \captionsetup{labelformat=empty} \caption{Fig. 1.2}
    \end{figure} Show that the plane cannot be smooth.
OCR MEI M2 2016 June Q2
2
  1. A bullet of mass 0.04 kg is fired into a fixed uniform rectangular block along a line through the centres of opposite parallel faces, as shown in Fig. 2.1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-3_209_1287_342_388} \captionsetup{labelformat=empty} \caption{Fig. 2.1}
    \end{figure} The bullet enters the block at \(50 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and comes to rest after travelling 0.2 m into the block.
    1. Calculate the resistive force on the bullet, assuming that this force is constant. Another bullet of the same mass is fired, as before, with the same speed into a similar block of mass 3.96 kg . The block is initially at rest and is free to slide on a smooth horizontal plane.
    2. By considering linear momentum, find the speed of the block with the bullet embedded in it and at rest relative to the block.
    3. By considering mechanical energy, find the distance the bullet penetrates the block, given the resistance of the block to the motion of the bullet is the same as in part (i).
  2. Fig. 2.2 shows a block of mass 6 kg on a uniformly rough plane that is inclined at \(30 ^ { \circ }\) to the horizontal. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-3_348_636_1382_712} \captionsetup{labelformat=empty} \caption{Fig. 2.2}
    \end{figure} A string with a constant tension of 91.5 N parallel to the plane pulls the block up a line of greatest slope. The speed of the block increases from \(1 \mathrm {~ms} ^ { - 1 }\) to \(7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) over a distance of 8 m .
OCR MEI M2 2016 June Q4
4 Fig. 4.1 shows a hollow circular cylinder open at one end and closed at the other. The radius of the cylinder is 0.1 m and its height is \(h \mathrm {~m} . \mathrm { O }\) and C are points on the axis of symmetry at the centres of the open and closed ends, respectively. The thin material used for the closed end has four times the density of the thin material used for the curved surface. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-5_366_656_443_717} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
\end{figure} Cylinders of this type are made with different values of \(h\).
  1. Show that the centres of mass of these cylinders are on the line OC at a distance \(\frac { 5 h ^ { 2 } + 2 h } { 2 + 10 h } \mathrm {~m}\) from O . Fig. 4.2 shows one of the cylinders placed with its open end on a slope inclined at an angle \(\alpha\) to the horizontal, where \(\tan \alpha = \frac { 2 } { 3 }\). The cylinder does not slip but is on the point of tipping.
  2. Show that \(50 h ^ { 2 } + 5 h - 3 = 0\) and hence that \(h = 0.2\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-5_383_497_1178_1402} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
    \end{figure} Fig. 4.3 shows another of the cylinders that has weight 42 N and \(h = 0.5\). This cylinder has its open end on a rough horizontal plane. A force of magnitude \(T \mathrm {~N}\) is applied to a point P on the circumference of the closed end. This force is at an angle \(\beta\) with the horizontal such that \(\tan \beta = \frac { 3 } { 4 }\) and the force is in the vertical plane containing \(\mathrm { O } , \mathrm { C }\) and P . The cylinder does not slip but is on the point of tipping. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-5_451_679_1955_685} \captionsetup{labelformat=empty} \caption{Fig. 4.3}
    \end{figure}
  3. Calculate \(T\).
Edexcel M2 Q1
  1. Two identical particles are approaching each other along a straight horizontal track. Just before they collide, they are moving with speeds \(5 \mathrm {~ms} ^ { - 1 }\) and \(3 \mathrm {~ms} ^ { - 1 }\) respectively. The coefficient of restitution between the particles is \(\frac { 1 } { 2 }\).
Find the speeds of the particles immediately after the impact.
Edexcel M2 Q2
2. A particle \(P\) of mass 3 kg moves such that at time \(t\) seconds its position vector, \(\mathbf { r }\) metres, relative to a fixed origin, \(O\), is given by $$\mathbf { r } = \left( t ^ { 2 } - 3 t \right) \mathbf { i } + \frac { 1 } { 6 } t ^ { 3 } \mathbf { j }$$ where \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular horizontal unit vectors.
  1. Find the velocity of \(P\) when \(t = 0\).
  2. Find the kinetic energy lost by \(P\) in the interval \(0 \leq t \leq 2\).
Edexcel M2 Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0e751be-f095-4a56-8ee9-8433cc4873e9-2_424_360_1155_648} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Figure 1 shows a uniform ladder of mass 15 kg and length 8 m which rests against a smooth vertical wall at \(A\) with its lower end on rough horizontal ground at \(B\). The coefficient of friction between the ladder and the ground is \(\frac { 1 } { 3 }\) and the ladder is inclined at an angle \(\theta\) to the horizontal, where \(\tan \theta = 2\). A man of mass 75 kg ascends the ladder until he reaches a point \(P\). The ladder is then on the point of slipping.
  1. Write down suitable models for
    1. the ladder,
    2. the man.
  2. Find the distance \(A P\).
Edexcel M2 Q4
4. A particle \(P\) moves in a straight horizontal line such that its acceleration at time \(t\) seconds is proportional to \(\left( 3 t ^ { 2 } - 5 \right)\). Given that at time \(t = 0 , P\) is at rest at the origin \(O\) and that at time \(t = 3\), its velocity is \(3 \mathrm {~ms} ^ { - 1 }\),
  1. find, in \(\mathrm { m } \mathrm { s } ^ { - 2 }\), the acceleration of \(P\) in terms of \(t\),
  2. show that the displacement of the particle, \(s\) metres, from \(O\) at time \(t\) is given by $$s = \frac { 1 } { 16 } t ^ { 2 } \left( t ^ { 2 } - 10 \right)$$ (4 marks)
Edexcel M2 Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0e751be-f095-4a56-8ee9-8433cc4873e9-3_591_609_785_623} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Figure 2 shows a uniform plane lamina \(A B C D E G\) in the shape of a letter ' \(L\) ' consisting of a rectangle \(A B F G\) joined to another rectangle \(C D E F\). The sides \(A B\) and \(D E\) are both 8 cm long and the sides \(E G\) and \(G A\) are of length 24 cm and 32 cm respectively.
  1. Show that the centre of mass of the lamina lies on the line \(B F\).
  2. Find the distance of the centre of mass from the line \(A B\). The uniform lamina in Figure 2 is a model of the letter ' \(L\) ' in a sign above a shop. The letter is normally suspended from a wall at \(A\) and \(B\) so that \(A B\) is horizontal but the fixing at \(B\) has broken and the letter hangs in equilibrium from the point \(A\).
  3. Find, in degrees to one decimal place, the acute angle \(A G\) makes with the vertical.
Edexcel M2 Q6
6. The engine of a car of mass 1200 kg is working at a constant rate of 90 kW as the car moves along a straight horizontal road. The resistive forces opposing the motion of the car are constant and of magnitude 1800 N .
  1. Find the acceleration of the car when it is travelling at \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find, in kJ, the kinetic energy of the car when it is travelling at maximum speed. The car ascends a hill which is straight and makes an angle \(\alpha\) with the horizontal. The power output of the engine and the non-gravitational forces opposing the motion remain the same. Given that the car can attain a maximum speed of \(25 \mathrm {~ms} ^ { - 1 }\),
  3. find, in degrees correct to one decimal place, the value of \(\alpha\).
    (5 marks)
Edexcel M2 Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0e751be-f095-4a56-8ee9-8433cc4873e9-4_236_942_1101_479} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Figure 3 shows the path of a golf ball which is hit from the point \(O\) with speed \(49 \mathrm {~ms} ^ { - 1 }\) at an angle of \(30 ^ { \circ }\) to the horizontal. The path of the ball is in a vertical plane containing \(O\) and the hole at which the ball is aimed. The hole is 170 m from \(O\) and on the same horizontal level as \(O\).
  1. Suggest a suitable model for the motion of the golf ball. Find, correct to 3 significant figures,
  2. the distance beyond the hole at which the ball hits the ground,
  3. the magnitude and direction of the velocity of the ball when it is directly above the hole.
Edexcel M2 Q1
  1. A bullet of mass 25 g is fired directly at a fixed wooden block of thickness 4 cm and passes through it. When the bullet hits the block, it is travelling horizontally at \(200 \mathrm {~ms} ^ { - 1 }\). The block exerts a constant resistive force of 8000 N on the bullet.
    1. Find the work done by the block on the bullet.
    By using the Work-Energy principle,
  2. show that the bullet emerges from the block with speed \(120 \mathrm {~ms} ^ { - 1 }\).
Edexcel M2 Q2
2. A car is travelling along a straight horizontal road against resistances to motion which are constant and total 2000 N . When the engine of the car is working at a rate of \(H\) kilowatts, the maximum speed of the car is \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Find the value of \(H\). The car driver wishes to overtake another vehicle so she increases the rate of working of the engine by \(20 \%\) and this results in an initial acceleration of \(0.32 \mathrm {~ms} ^ { - 2 }\). Assuming that the resistances to motion remain constant,
  2. find the mass of the car.
    (4 marks)
Edexcel M2 Q3
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{086ace58-0aa9-4f36-95c3-5698d14f511e-2_369_684_1356_555} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Figure 1 shows a uniform triangular lamina \(A B C\) placed with edge \(B C\) along the line of greatest slope of a plane inclined at an angle \(\theta\) to the horizontal. The lengths \(A C\) and \(B C\) are 15 cm and 9 cm respectively and \(\angle A B C\) is a right angle.
  1. Find the distance of the centre of mass of the lamina from
    1. \(\quad A B\),
    2. \(B C\). Assuming that the plane is rough enough to prevent the lamina from slipping,
  2. find in degrees, correct to 1 decimal place, the maximum value of \(\theta\) for which the lamina remains in equilibrium.
    (4 marks)
Edexcel M2 Q4
4. The velocity \(\mathbf { v } \mathrm { ms } ^ { - 1 }\) of a particle \(P\) at time \(t\) seconds is given by \(\mathbf { v } = 3 t \mathbf { i } - t ^ { 2 } \mathbf { j }\).
  1. Find the magnitude of the acceleration of \(P\) when \(t = 2\). When \(t = 0\), the displacement of \(P\) from a fixed origin \(O\) is \(( 6 \mathbf { i } + 12 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\), where \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular horizontal unit vectors.
  2. Show that the displacement of \(P\) from \(O\) when \(t = 6\) is given by \(k ( \mathbf { i } - \mathbf { j } ) \mathrm { m }\), where \(k\) is an integer which you should find.
    (6 marks)
Edexcel M2 Q5
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{086ace58-0aa9-4f36-95c3-5698d14f511e-3_417_851_778_614} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} A uniform rod \(A B\) of length \(2 a\) and mass 8 kg is smoothly hinged to a vertical wall at \(A\). The rod is held in equilibrium inclined at an angle of \(20 ^ { \circ }\) to the horizontal by a force of magnitude \(F\) newtons acting horizontally at \(B\) which is below the level of \(A\) as shown in Figure 2.
  1. Find, correct to 3 significant figures, the value of \(F\).
  2. Show that the magnitude of the reaction at the hinge is 133 N , correct to 3 significant figures, and find to the nearest degree the acute angle which the reaction makes with the vertical.
Edexcel M2 Q6
6. A particle \(P\) is projected from a point \(A\) on horizontal ground with speed \(u\) at an angle of elevation \(\alpha\) and moves freely under gravity. \(P\) hits the ground at the point \(B\).
  1. Show that \(A B = \frac { u ^ { 2 } } { g } \sin 2 \alpha\). An archer fires an arrow with an initial speed of \(45 \mathrm {~ms} ^ { - 1 }\) at a target which is level with the point of projection and at a distance of 80 m . Given that the arrow hits the target,
  2. find in degrees, correct to 1 decimal place, the two possible angles of projection.
  3. Write down, with a reason, which of the two possible angles of projection would give the shortest time of flight.
    (2 marks)
  4. Show that the minimum time of flight is 1.8 seconds, correct to 1 decimal place.
    (2 marks)
Edexcel M2 Q7
7. A smooth sphere \(A\) of mass \(4 m\) is moving on a smooth horizontal plane with speed \(u\). It collides directly with a stationary smooth sphere \(B\) of mass \(5 m\) and with the same radius as \(A\). The coefficient of restitution between \(A\) and \(B\) is \(\frac { 1 } { 2 }\).
  1. Show that after the collision the speed of \(B\) is 4 times greater than the speed of \(A\).
    (7 marks)
    Sphere \(B\) subsequently hits a smooth vertical wall at right angles. After rebounding from the wall, \(B\) collides with \(A\) again and as a result of this collision, \(B\) comes to rest. Given that the coefficient of restitution between \(B\) and the wall is \(e\),
  2. find \(e\). END
Edexcel M2 Q1
  1. A particle \(P\) of mass 2 kg is subjected to a force \(\mathbf { F }\) such that its displacement, \(\mathbf { r }\) metres, from a fixed origin, \(O\), at time \(t\) seconds is given by
$$\mathbf { r } = \left( 3 t ^ { 2 } - 4 \right) \mathbf { i } + \left( 3 - 4 t ^ { 2 } \right) \mathbf { j }$$
  1. Show that the acceleration of \(P\) is constant.
  2. Find the magnitude of \(\mathbf { F }\).
Edexcel M2 Q2
2. A pump raises water from a well 12 metres below the ground and ejects the water through a pipe of diameter 10 cm at a speed of \(6 \mathrm {~ms} ^ { - 1 }\). Given that the mass of \(1 \mathrm {~m} ^ { 3 }\) of water is 1000 kg ,
  1. find, in terms of \(\pi\), the mass of water discharged by the pipe every second,
  2. find in kJ , correct to 3 significant figures, the total mechanical energy gained by the water per second.
Edexcel M2 Q3
3. A particle moves in a straight horizontal line such that its velocity, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), at time \(t\) seconds is given by \(v = 2 t ^ { 2 } - 9 t + 4\). Initially, the particle has displacement 9 m from a fixed point \(O\) on the line.
  1. Find the initial velocity of the particle.
  2. Show that the particle is at rest when \(t = 4\) and find the other value of \(t\) when it is at rest.
  3. Find the displacement of the particle from \(O\) when \(t = 6\).
Edexcel M2 Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f8ece90a-5042-4db1-9855-ffe74333a899-3_407_341_201_635} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Figure 1 shows a uniform ladder of mass \(m\) and length \(2 a\) resting against a rough vertical wall with its lower end on rough horizontal ground. The coefficient of friction between the ladder and the wall is \(\frac { 1 } { 2 }\) and the coefficient of friction between the ladder and the ground is \(\frac { 1 } { 3 }\). Given that the ladder is in limiting equilibrium when it is inclined at an angle \(\theta\) to the horizontal, show that \(\tan \theta = \frac { 5 } { 4 }\).
(9 marks)
Edexcel M2 Q5
5. A firework company is testing its new brand of firework, the Sputnik Special. One of the company's employees lights a Sputnik Special on a large area of horizontal ground and it takes off at a small angle to the vertical. After a flight lasting 8 seconds it lands at a distance of 24 metres from the point where it was launched. The employee models the firework as a particle and ignores air resistance and any loss of mass which the Sputnik Special experiences. Using this model, find for this flight of the Sputnik Special,
  1. the horizontal and vertical components of the initial velocity,
  2. the initial speed, correct to 3 significant figures,
  3. the maximum height attained.
  4. Comment on the suitability of the modelling assumptions made by the employee.
Edexcel M2 Q6
6. Three uniform spheres \(A , B\) and \(C\) of equal radius have masses \(3 m , 2 m\) and \(2 m\) respectively. Initially, the spheres are at rest on a smooth horizontal table with their centres in a straight line and with \(B\) between \(A\) and \(C\). Sphere \(A\) is projected directly towards \(B\) with speed \(u\). Given that the coefficient of restitution between \(A\) and \(B\) is \(\frac { 2 } { 3 }\),
  1. show that the speeds of \(A\) and \(B\) after the collision are \(\frac { 1 } { 3 } u\) and \(u\) respectively.
    (6 marks)
    The coefficient of restitution between \(B\) and \(C\) is \(e\). Given that \(A\) and \(B\) collide again,
  2. show that \(e > \frac { 1 } { 3 }\).
    (8 marks)
Edexcel M2 Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f8ece90a-5042-4db1-9855-ffe74333a899-4_542_625_959_589} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Figure 2 shows a uniform lamina \(A B C D\) formed by removing an isosceles triangle \(B C D\) from an equilateral triangle \(A B D\) of side \(2 d\). The point \(C\) is the centroid of triangle \(A B D\).
  1. Find the area of triangle \(B C D\) in terms of \(d\).
  2. Show that the distance of the centre of mass of the lamina from \(B D\) is \(\frac { 4 } { 9 } \sqrt { 3 } d\).
    (8 marks)
    The lamina is freely suspended from the point \(B\) and hangs at rest.
  3. Find in degrees, correct to 1 decimal place, the acute angle that the side \(A B\) makes with the vertical.