OCR MEI M2 2016 June — Question 4

Exam BoardOCR MEI
ModuleM2 (Mechanics 2)
Year2016
SessionJune
TopicCentre of Mass 1

4 Fig. 4.1 shows a hollow circular cylinder open at one end and closed at the other. The radius of the cylinder is 0.1 m and its height is \(h \mathrm {~m} . \mathrm { O }\) and C are points on the axis of symmetry at the centres of the open and closed ends, respectively. The thin material used for the closed end has four times the density of the thin material used for the curved surface. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-5_366_656_443_717} \captionsetup{labelformat=empty} \caption{Fig. 4.1}
\end{figure} Cylinders of this type are made with different values of \(h\).
  1. Show that the centres of mass of these cylinders are on the line OC at a distance \(\frac { 5 h ^ { 2 } + 2 h } { 2 + 10 h } \mathrm {~m}\) from O . Fig. 4.2 shows one of the cylinders placed with its open end on a slope inclined at an angle \(\alpha\) to the horizontal, where \(\tan \alpha = \frac { 2 } { 3 }\). The cylinder does not slip but is on the point of tipping.
  2. Show that \(50 h ^ { 2 } + 5 h - 3 = 0\) and hence that \(h = 0.2\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-5_383_497_1178_1402} \captionsetup{labelformat=empty} \caption{Fig. 4.2}
    \end{figure} Fig. 4.3 shows another of the cylinders that has weight 42 N and \(h = 0.5\). This cylinder has its open end on a rough horizontal plane. A force of magnitude \(T \mathrm {~N}\) is applied to a point P on the circumference of the closed end. This force is at an angle \(\beta\) with the horizontal such that \(\tan \beta = \frac { 3 } { 4 }\) and the force is in the vertical plane containing \(\mathrm { O } , \mathrm { C }\) and P . The cylinder does not slip but is on the point of tipping. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8fb49c8b-92e5-49e5-9a3a-e8391c82d9a1-5_451_679_1955_685} \captionsetup{labelformat=empty} \caption{Fig. 4.3}
    \end{figure}
  3. Calculate \(T\).