5.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f0e751be-f095-4a56-8ee9-8433cc4873e9-3_591_609_785_623}
\captionsetup{labelformat=empty}
\caption{Fig. 2}
\end{figure}
Figure 2 shows a uniform plane lamina \(A B C D E G\) in the shape of a letter ' \(L\) ' consisting of a rectangle \(A B F G\) joined to another rectangle \(C D E F\). The sides \(A B\) and \(D E\) are both 8 cm long and the sides \(E G\) and \(G A\) are of length 24 cm and 32 cm respectively.
- Show that the centre of mass of the lamina lies on the line \(B F\).
- Find the distance of the centre of mass from the line \(A B\).
The uniform lamina in Figure 2 is a model of the letter ' \(L\) ' in a sign above a shop. The letter is normally suspended from a wall at \(A\) and \(B\) so that \(A B\) is horizontal but the fixing at \(B\) has broken and the letter hangs in equilibrium from the point \(A\).
- Find, in degrees to one decimal place, the acute angle \(A G\) makes with the vertical.