2 The matrices \(\mathbf { A } , \mathbf { B }\) and \(\mathbf { C }\) are given by \(\mathbf { A } = \left( \begin{array} { r r } 1 & a
- 1 & 2 \end{array} \right) , \mathbf { B } = \left( \begin{array} { r r } 2 & 0
1 & - 1 \end{array} \right)\) and \(\mathbf { C } = \left( \begin{array} { r r } - 1 & 0
2 & 1 \end{array} \right)\), where \(a\) is
a constant. a constant.
- By multiplying out the matrices on both sides of the equation, verify that \(\mathbf { A } ( \mathbf { B C } ) = ( \mathbf { A B } ) \mathbf { C }\).
- State the property of matrix multiplication illustrated by this result.