Questions C4 (1162 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR C4 Q3
3 Show that \(\frac { \sin 2 \theta } { 1 + \cos 2 \theta } = \tan \theta\).
OCR C4 Q5
5 Solve the equation \(2 \sin 2 \theta + \cos 2 \theta = 1\), for \(0 ^ { \circ } \leqslant \theta < 360 ^ { \circ }\).
OCR C4 Q6
6 Express \(6 \cos 2 \theta + \sin \theta\) in terms of \(\sin \theta\).
Hence solve the equation \(6 \cos 2 \theta + \sin \theta = 0\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR C4 Q7
7
  1. Show that \(\cos ( \alpha + \beta ) = \frac { 1 - \tan \alpha \tan \beta } { \sec \alpha \sec \beta }\).
  2. Hence show that \(\cos 2 \alpha = \frac { 1 - \tan ^ { 2 } \alpha } { 1 + \tan ^ { 2 } \alpha }\).
  3. Hence or otherwise solve the equation \(\frac { 1 - \tan ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta } = \frac { 1 } { 2 }\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR C4 Q8
8 In Fig. 6, OAB is a thin bent rod, with \(\mathrm { OA } = a\) metres, \(\mathrm { AB } = b\) metres and angle \(\mathrm { OAB } = 120 ^ { \circ }\). The bent rod lies in a vertical plane. OA makes an angle \(\theta\) above the horizontal. The vertical height BD of B above O is \(h\) metres. The horizontal through A meets BD at C and the vertical through A meets OD at E . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9a4946dc-ab5a-499c-922c-a9eb1cd0f756-3_426_889_507_665} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find angle BAC in terms of \(\theta\). Hence show that $$h = a \sin \theta + b \sin \left( \theta - 60 ^ { \circ } \right) .$$
  2. Hence show that \(h = \left( a + \frac { 1 } { 2 } b \right) \sin \theta - \frac { \sqrt { 3 } } { 2 } b \cos \theta\). The rod now rotates about O , so that \(\theta\) varies. You may assume that the formulae for \(h\) in parts (i) and (ii) remain valid.
  3. Show that OB is horizontal when \(\tan \theta = \frac { \sqrt { 3 } b } { 2 a + b }\). In the case when \(a = 1\) and \(b = 2 , h = 2 \sin \theta - \sqrt { 3 } \cos \theta\).
  4. Express \(2 \sin \theta - \sqrt { 3 } \cos \theta\) in the form \(R \sin ( \theta - \alpha )\). Hence, for this case, write down the maximum value of \(h\) and the corresponding value of \(\theta\).
  5. Express \(\cos \theta + \sqrt { 3 } \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(\alpha\) is acute, expressing \(\alpha\) in terms of \(\pi\).
  6. Write down the derivative of \(\tan \theta\). Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \frac { 1 } { ( \cos \theta + \sqrt { 3 } \sin \theta ) ^ { 2 } } \mathrm {~d} \theta = \frac { \sqrt { 3 } } { 4 }\).
OCR MEI C4 Q1
1 Express \(6 \cos 2 \theta + \sin \theta\) in terms of \(\sin \theta\).
Hence solve the equation \(6 \cos 2 \theta + \sin \theta = 0\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C4 Q2
2
  1. Show that \(\cos ( \alpha + \beta ) = \frac { 1 - \tan \alpha \tan \beta } { \sec \alpha \sec \beta }\).
  2. Hence show that \(\cos 2 \alpha = \frac { 1 - \tan ^ { 2 } \alpha } { 1 + \tan ^ { 2 } \alpha }\).
  3. Hence or otherwise solve the equation \(\frac { 1 - \tan ^ { 2 } \theta } { 1 + \tan ^ { 2 } \theta } = \frac { 1 } { 2 }\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR MEI C4 Q3
3 Given the equation \(\sin \left( + 45 ^ { \circ } \right) = 2 \cos [\), show that \(\sin + \cos = 22 \cos\). Hence solve, correct to 2 decimal places, the equation for \(0 ^ { \circ } \quad \left[ \sqrt { 3 } 60 ^ { \circ } \right.\). $$\leqslant \leqslant$$
OCR MEI C4 Q4
4 Solve the equation \(\tan \left( \theta + 45 ^ { \circ } \right) = 1 - 2 \tan \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 90 ^ { \circ }\).
OCR MEI C4 Q5
5 Given that \(\sin ( \theta + \alpha ) = 2 \sin \theta\), show that \(\tan \theta = \frac { \sin \alpha } { 2 - \cos \alpha }\). Hence solve the equation \(\sin \left( \theta + 40 ^ { \circ } \right) = 2 \sin \theta\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C4 Q6
6 Solve the equation \(2 \cos 2 x = 1 + \cos x\), for \(0 ^ { \circ } \leqslant x < 360 ^ { \circ }\).
OCR MEI C4 Q1
1 In Fig. 6, OAB is a thin bent rod, with \(\mathrm { OA } = a\) metres, \(\mathrm { AB } = b\) metres and angle \(\mathrm { OAB } = 120 ^ { \circ }\). The bent rod lies in a vertical plane. OA makes an angle \(\theta\) above the horizontal. The vertical height BD of B above O is \(h\) metres. The horizontal through A meets BD at C and the vertical through A meets OD at E . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9ac55ae6-7a7f-47d0-a363-92da179be4ca-1_427_898_464_683} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find angle BAC in terms of \(\theta\). Hence show that $$h = a \sin \theta + b \sin \left( \theta - 60 ^ { \circ } \right) .$$
  2. Hence show that \(h = \left( a + \frac { 1 } { 2 } b \right) \sin \theta - \frac { \sqrt { 3 } } { 2 } b \cos \theta\). The rod now rotates about O , so that \(\theta\) varies. You may assume that the formulae for \(h\) in parts (i) and (ii) remain valid.
  3. Show that OB is horizontal when \(\tan \theta = \frac { \sqrt { 3 } b } { 2 a + b }\). In the case when \(a = 1\) and \(b = 2 , h = 2 \sin \theta - \sqrt { 3 } \cos \theta\).
  4. Express \(2 \sin \theta - \sqrt { 3 } \cos \theta\) in the form \(R \sin ( \theta - \alpha )\). Hence, for this case, write down the maximum value of \(h\) and the corresponding value of \(\theta\).
OCR MEI C4 Q2
2 Express \(3 \cos \theta + 4 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { - \pi } { 2 }\).
Hence solve the equation \(3 \cos \theta + 4 \sin \theta = 2\) for \(\quad - \pi \leqslant \theta \leqslant \pi\).
OCR MEI C4 Q3
3 Show that the equation \(\operatorname { cosec } x + 5 \cot x = 3 \sin x\) may be rearranged as $$3 \cos ^ { 2 } x + 5 \cos x - 2 = 0$$ Hence solve the equation for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\), giving your answers to 1 decimal place.
OCR MEI C4 Q4
4 Part of the track of a roller-coaster is modelled by a curve with the parametric equations $$x = 2 \theta - \sin \theta , \quad y = 4 \cos \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi$$ This is shown in Fig. 8. B is a minimum point, and BC is vertical. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9ac55ae6-7a7f-47d0-a363-92da179be4ca-3_591_1437_433_391} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the values of the parameter at A and B . Hence show that the ratio of the lengths OA and AC is \(( \pi - 1 ) : ( \pi + 1 )\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Find the gradient of the track at A .
  3. Show that, when the gradient of the track is \(1 , \theta\) satisfies the equation $$\cos \theta - 4 \sin \theta = 2$$
  4. Express \(\cos \theta - 4 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\). Hence solve the equation \(\cos \theta - 4 \sin \theta = 2\) for \(0 \leqslant \theta \leqslant 2 \pi\).
OCR MEI C4 Q5
5 Express \(4 \cos \theta - \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
Hence solve the equation \(4 \cos \theta - \sin \theta = 3\), for \(0 \leqslant \theta \leqslant 2 \pi\).
OCR MEI C4 Q1
1 Given that \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\), show that \(\cot ^ { 2 } \theta - \cot \theta - 2 = 0\).
Hence solve the equation \(\operatorname { cosec } ^ { 2 } \theta - \cot \theta = 3\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR MEI C4 Q2
2 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain approximations for \(\pi\).
  1. Fig. 8.1 shows a regular 12-sided polygon inscribed in a circle of radius 1 unit, centre \(\mathrm { O } . \mathrm { AB }\) is one of the sides of the polygon. C is the midpoint of AB . Archimedes used the fact that the circumference of the circle is greater than the perimeter of this polygon. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{54a69773-651f-4e2f-9a3c-06ea7c07098b-2_457_422_457_936} \captionsetup{labelformat=empty} \caption{Fig. 8.1}
    \end{figure} (A) Show that \(\mathrm { AB } = 2 \sin 15 ^ { \circ }\).
    (B) Use a double angle formula to express \(\cos 30 ^ { \circ }\) in terms of \(\sin 15 ^ { \circ }\). Using the exact value of \(\cos 30 ^ { \circ }\), show that \(\sin 15 ^ { \circ } = \frac { 1 } { 2 } \sqrt { 2 - \sqrt { 3 } }\).
    (C) Use this result to find an exact expression for the perimeter of the polygon. Hence show that \(\pi > 6 \sqrt { 2 - \sqrt { 3 } }\).
  2. In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of the circle is less than the perimeter of this polygon. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{54a69773-651f-4e2f-9a3c-06ea7c07098b-2_450_420_1562_938} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
    \end{figure} (A) Show that \(\mathrm { DE } = 2 \tan 15 ^ { \circ }\).
    (B) Let \(t = \tan 15 ^ { \circ }\). Use a double angle formula to express \(\tan 30 ^ { \circ }\) in terms of \(t\). Hence show that \(t ^ { 2 } + 2 \sqrt { 3 } t - 1 = 0\).
    (C) Solve this equation, and hence show that \(\pi < 12 ( 2 - \sqrt { 3 } )\).
  3. Use the results in parts (i)( \(C\) ) and (ii)( \(C\) ) to establish upper and lower bounds for the value of \(\pi\), giving your answers in decimal form.
OCR MEI C4 Q3
3 Express \(\sin \theta - 3 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants to be determined, and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Hence solve the equation \(\sin \theta - 3 \cos \theta = 1\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{54a69773-651f-4e2f-9a3c-06ea7c07098b-4_606_624_236_754} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} In a theme park ride, a capsule C moves in a vertical plane (see Fig. 8). With respect to the axes shown, the path of C is modelled by the parametric equations $$x = 10 \cos \theta + 5 \cos 2 \theta , \quad y = 10 \sin \theta + 5 \sin 2 \theta , \quad ( 0 \leqslant \theta < 2 \pi )$$ where \(x\) and \(y\) are in metres.
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { \cos \theta + \cos 2 \theta } { \sin \theta + \sin 2 \theta }\). Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(\theta = \frac { 1 } { 3 } \pi\). Hence find the exact coordinates of the highest point A on the path of C .
  2. Express \(x ^ { 2 } + y ^ { 2 }\) in terms of \(\theta\). Hence show that $$x ^ { 2 } + y ^ { 2 } = 125 + 100 \cos \theta$$
  3. Using this result, or otherwise, find the greatest and least distances of C from O . You are given that, at the point B on the path vertically above O , $$2 \cos ^ { 2 } \theta + 2 \cos \theta - 1 = 0$$
  4. Using this result, and the result in part (ii), find the distance OB. Give your answer to 3 significant figures.
OCR MEI C4 Q5
5 Show that \(\cot 2 \theta = \frac { 1 - \tan ^ { 2 } \theta } { 2 \tan \theta }\).
Hence solve the equation $$\cot 2 \theta = 1 + \tan \theta \quad \text { for } 0 ^ { \circ } < \theta < 360 ^ { \circ } .$$
OCR MEI C4 Q1
1 A curve has parametric equations \(x = \sec \theta , y = 2 \tan \theta\).
  1. Given that the derivative of \(\sec \theta\) is \(\sec \theta \tan \theta\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2 \operatorname { cosec } \theta\).
  2. Verify that the cartesian equation of the curve is \(y ^ { 2 } = 4 x ^ { 2 } - 4\). Fig. 5 shows the region enclosed by the curve and the line \(x = 2\). This region is rotated through \(180 ^ { \circ }\) about the \(x\)-axis. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{1e788cb0-36b0-42a9-9e0c-077022d410ae-1_556_867_580_588} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure}
  3. Find the volume of revolution produced, giving your answer in exact form.
OCR MEI C4 Q2
2 Show that the equation \(\operatorname { cosec } x + 5 \cot x = 3 \sin x\) may be rearranged as $$3 \cos ^ { 2 } x + 5 \cos x - 2 = 0$$ Hence solve the equation for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\), giving your answers to 1 decimal place.
OCR MEI C4 Q3
3 Using appropriate right-angled triangles, show that \(\tan 45 ^ { \circ } = 1\) and \(\tan 30 ^ { \circ } = \frac { 1 } { \sqrt { 3 } }\).
Hence show that \(\tan 75 ^ { \circ } = 2 + \sqrt { 3 }\).
OCR MEI C4 Q4
4 Prove that \(\sec ^ { 2 } \theta + \operatorname { cosec } ^ { 2 } \theta = \sec ^ { 2 } \theta \operatorname { cosec } ^ { 2 } \theta\).
OCR MEI C4 Q5
5 Solve the equation \(\operatorname { cosec } ^ { 2 } \theta = 1 + 2 \cot \theta\), for \(- 180 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).