| Exam Board | OCR MEI |
| Module | C4 (Core Mathematics 4) |
| Topic | Reciprocal Trig & Identities |
3 Show that the equation \(\operatorname { cosec } x + 5 \cot x = 3 \sin x\) may be rearranged as
$$3 \cos ^ { 2 } x + 5 \cos x - 2 = 0$$
Hence solve the equation for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\), giving your answers to 1 decimal place.