Questions C4 (1162 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C4 Q1
1 Using partial fractions, find \(\int \frac { x } { ( x + 1 ) ( 2 x + 1 ) } \mathrm { d } x\).
  1. Express \(\cos \theta + \sqrt { 3 } \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(\alpha\) is acute, expressing \(\alpha\) in terms of \(\pi\).
  2. Write down the derivative of \(\tan \theta\). Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \frac { 1 } { ( \cos \theta + \sqrt { 3 } \sin \theta ) ^ { 2 } } \mathrm {~d} \theta = \frac { \sqrt { 3 } } { 4 }\).
OCR MEI C4 Q3
3 In a chemical process, the mass \(\boldsymbol { M }\) grams of a chemical at time \(\boldsymbol { t }\) minutes is modelled by the differential equation $$\underset { d t } { d \underline { \underline { M } } } - \underset { \mathrm { z } \left( \left. \right| ^ { \prime } + \mathrm { z } ^ { 2 } \right) ^ { \prime } } { M _ { - } }$$
  1. Find \({ } _ { \mathrm { f } } \overline { 1 } ; \overline { 12 } d t\)
    (li) Find constants \(\boldsymbol { A } , \boldsymbol { B }\) and \(\boldsymbol { C }\) such lhat $$\begin{array} { c c } 1 & B t + C
    \hdashline t \left( I + t ^ { 2 } \right) & I \end{array} . + \begin{array} { c c } I & I + 1 ^ { 2 } . \end{array}$$
  2. Use integration, together with your results in parts (i) and (ii), to show that $$M = \frac { K t } { J \sqrt { + , 2 } } ,$$ where \(\boldsymbol { K }\) is a constant.
  3. When \(\boldsymbol { t } = \mathrm { I } , \boldsymbol { M } = 25\). Calculate \(\boldsymbol { K }\) What is the mass of the chemical in the long term?
OCR MEI C4 Q4
4 The growth of a tree is modelled by the differential equation $$10 \frac { \mathrm {~d} h } { \mathrm {~d} t } = 20 - h$$ where \(h\) is its height in metres and the time \(t\) is in years. It is assumed that the tree is grown from seed, so that \(h = 0\) when \(t = 0\).
  1. Write down the value of \(h\) for which \(\frac { \mathrm { d } h } { \mathrm {~d} t } = 0\), and interpret this in terms of the growth of the tree.
  2. Verify that \(h = 20 \left( 1 - \mathrm { e } ^ { - 0.1 t } \right)\) satisfies this differential equation and its initial condition. The alternative differential equation $$200 \frac { \mathrm {~d} h } { \mathrm {~d} t } = 400 - h ^ { 2 }$$ is proposed to model the growth of the tree. As before, \(h = 0\) when \(t = 0\).
  3. Using partial fractions, show by integration that the solution to the alternative differential equation is $$h = \frac { 20 \left( 1 - \mathrm { e } ^ { - 0.2 t } \right) } { 1 + \mathrm { e } ^ { - 0.2 t } }$$
  4. What does this solution indicate about the long-term height of the tree?
  5. After a year, the tree has grown to a height of 2 m . Which model fits this information better?
OCR MEI C4 Q5
4 marks
5
  1. Find the first three non-zero terms of the binomial expansion of \(\frac { 1 } { \sqrt { 4 } x ^ { 2 } }\) for \(| x | < 2\). [4]
  2. Use this result to find an approximation for \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to
    4 significant figures.
  3. Given that \(\int \frac { 1 } { \sqrt { 4 x ^ { 2 } } } \mathrm {~d} x = \arcsin \left( \frac { 1 } { 2 } x \right) + c\), evaluate \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 x ^ { 2 } } } \mathrm {~d} x\), rounding your answer to 4 significant figures.
OCR MEI C4 Q1
1 Fig. 3 shows the curve \(y = x ^ { 3 } + \sqrt { ( \sin x ) }\) for \(0 \leqslant x \leqslant \frac { \pi } { 4 }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-1_587_540_393_768} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. Use the trapezium rule with 4 strips to estimate the area of the region bounded by the curve, the \(x\)-axis and the line \(x = \frac { \pi } { 4 }\), giving your answer to 3 decimal places.
  2. Suppose the number of strips in the trapezium rule is increased. Without doing further calculations, state, with a reason, whether the area estimate increases, decreases, or it is not possible to say.
OCR MEI C4 Q2
2 Fig. 2 shows the curve \(y = \overline { 1 + x ^ { 2 } }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-2_577_941_549_636} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure}
  1. The following table gives some values of \(x\) and \(y\).
    \(x\)00.250.50.751
    \(y\)11.03081.251.4142
    Find the missing value of \(y\), giving your answer correct to 4 decimal places. Hence show that, using the trapezium rule with four strips, the shaded area is approximately 1.151 square units.
  2. Jenny uses a trapezium rule with 8 strips, and obtains a value of 1.158 square units. Explain why she must have made a mistake.
  3. The shaded area is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the exact volume of the solid of revolution formed.
OCR MEI C4 Q3
3 Fig. 4 shows the curve \(y = \sqrt { 1 + \mathrm { e } ^ { 2 x } }\), and the region between the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-3_656_736_482_665} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the exact volume of revolution when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
    1. Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.
      \(x\)00.511.52
      \(y\)1.92832.89644.5919
    2. The trapezium rule for \(\int _ { 0 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { 2 x } } \mathrm {~d} x\) with 8 and 16 strips gives 6.797 and 6.823, although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.
OCR MEI C4 Q4
4
  1. Complete the table of values for the curve \(y = \sqrt { \cos x }\).
    \(X\)0\(\frac { \pi } { 8 }\)\(\frac { \pi } { 4 }\)\(\frac { 3 \pi } { 8 }\)\(\frac { \pi } { 2 }\)
    \(y\)0.96120.8409
    Hence use the trapezium rule with strip width \(h = \frac { \pi } { 8 }\) to estimate the value of the integral \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \sqrt { \cos x } \mathrm {~d} x\), giving your answer to 3 decimal places. Fig. 4 shows the curve \(y = \sqrt { \cos x }\) for \(0 \leqslant x \leqslant \frac { \pi } { 2 }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-4_459_751_799_638} \captionsetup{labelformat=empty} \caption{Fig. 4}
    \end{figure}
  2. State, with a reason, whether the trapezium rule with a strip width of \(\frac { \pi } { 16 }\) would give a larger or smaller estimate of the integral.
OCR MEI C4 Q5
2 marks
5
  1. Use the trapezium rule with four strips to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\), showing your working. Fig. 1 shows a sketch of \(y = \sqrt { 1 + \mathrm { e } ^ { x } }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-5_533_1074_441_565} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure}
  2. Suppose that the trapezium rule is used with more strips than in part (i) to estimate \(\int _ { - 2 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { x } } \mathrm {~d} x\). State, with a reason but no further calculation, whether this would give a larger or smaller estimate.
    [0pt] [2]
OCR MEI C4 Q6
6 Two students are trying to evaluate the integral \(\int _ { 1 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { - x } } \mathrm {~d} x\).
Sarah uses the trapezium rule with 2 strips, and starts by constructing the following table.
\(x\)11.52
\(\sqrt { 1 + \mathrm { e } ^ { - x } }\)1.16961.10601.0655
  1. Complete the calculation, giving your answer to 3 significant figures. Anish uses a binomial approximation for \(\sqrt { 1 + \mathrm { e } ^ { - x } }\) and then integrates this.
  2. Show that, provided \(\mathrm { e } ^ { - x }\) is suitably small, \(\left( 1 + \mathrm { e } ^ { - x } \right) ^ { \frac { 1 } { 2 } } \approx 1 + \frac { 1 } { 2 } \mathrm { e } ^ { - x } \quad \frac { 1 } { 8 } \mathrm { e } ^ { - 2 x }\).
  3. Use this result to evaluate \(\int _ { 1 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { - x } } \mathrm {~d} x\) approximately, giving your answer to 3 significant figures.
OCR MEI C4 Q1
1 Fig. 6 shows the region enclosed by the curve \(y = \left( 1 + 2 x ^ { 2 } \right) ^ { \frac { 1 } { 3 } }\) and the line \(y = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-1_426_664_277_714} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure} This region is rotated about the \(y\)-axis. Find the volume of revolution formed, giving your answer as a multiple of \(\pi\).
OCR MEI C4 Q2
2 Fig. 7a shows the curve with the parametric equations $$x = 2 \cos \theta , \quad y = \sin 2 \theta , \quad - \frac { \pi } { 2 } \leqslant \theta \leqslant \frac { \pi } { 2 } .$$ The curve meets the \(x\)-axis at O and P . Q and R are turning points on the curve. The scales on the axes are the same. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-2_509_660_571_714} \captionsetup{labelformat=empty} \caption{Fig. 7a}
\end{figure}
  1. State, with their coordinates, the points on the curve for which \(\theta = - \frac { \pi } { 2 } , \theta = 0\) and \(\theta = \frac { \pi } { 2 }\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\). Hence find the gradient of the curve when \(\theta = \frac { \pi } { 2 }\), and verify that the two tangents to the curve at the origin meet at right angles.
  3. Find the exact coordinates of the turning point Q . When the curve is rotated about the \(x\)-axis, it forms a paperweight shape, as shown in Fig. 7b. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-2_324_389_1692_857} \captionsetup{labelformat=empty} \caption{Fig. 7b}
    \end{figure}
  4. Express \(\sin ^ { 2 } \theta\) in terms of \(x\). Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 2 } \left( 1 - \frac { 1 } { 4 } x ^ { 2 } \right)\).
  5. Find the volume of the paperweight shape.
OCR MEI C4 Q3
3 Fig. 6 shows the region enclosed by part of the curve \(y = 2 x ^ { 2 }\), the straight line \(x + y = 3\), and the \(y\)-axis. The curve and the straight line meet at \(\mathrm { P } ( 1,2 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-3_640_923_399_613} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure} The shaded region is rotated through \(360 ^ { \circ }\) about the \(y\)-axis. Find, in terms of \(\pi\), the volume of the solid of revolution formed.
[0pt] [You may use the formula \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\) for the volume of a cone.]
OCR MEI C4 Q4
4 The part of the curve \(y = 4 - x ^ { 2 }\) that is above the \(x\)-axis is rotated about the \(y\)-axis. This is shown in Fig. 4. Find the volume of revolution produced, giving your answer in terms of \(\pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-3_534_595_1831_785} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
OCR MEI C4 Q5
5 Fig. 2 shows the curve \(y = \sqrt { } 1 + \mathrm { e } ^ { 2 x }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-4_434_873_306_665} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} The region bounded by the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 1\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Show that the volume of the solid of revolution produced is \(\frac { 1 } { 2 } \pi \left( 1 + \mathrm { e } ^ { 2 } \right)\).
OCR MEI C4 Q6
6 Fig. 3 shows the curve \(y = \ln x\) and part of the line \(y = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-4_244_548_1346_768} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} The shaded region is rotated through \(360 ^ { \circ }\) about the \(y\)-axis.
  1. Show that the volume of the solid of revolution formed is given by \(\int _ { 0 } ^ { 2 } \pi \mathrm { e } ^ { 2 y } \mathrm {~d} y\).
  2. Evaluate this, leaving your answer in an exact form.
OCR MEI C4 Q7
7
  1. Show that \(\int x \mathrm { e } ^ { - 2 x } \mathrm {~d} x = - \frac { 1 } { 4 } \mathrm { e } ^ { - 2 x } ( 1 + 2 x ) + c\). A vase is made in the shape of the volume of revolution of the curve \(y = x ^ { 1 / 2 } \mathrm { e } ^ { - x }\) about the \(x\)-axis between \(x = 0\) and \(x = 2\) (see Fig. 5). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-5_718_751_638_654} \captionsetup{labelformat=empty} \caption{Fig. 5}
    \end{figure}
  2. Show that this volume of revolution is \(\frac { 1 } { 4 } \pi \left( 1 \frac { 5 } { \mathrm { e } ^ { 4 } } \right)\).
OCR MEI C4 Q8
8 Fig. 4 shows a sketch of the region enclosed by the curve . \(\mathrm { J } 1 + \mathrm { e } - 2 \mathrm { x }\), the x -axis, the y -axis and the line \(\boldsymbol { x } = 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8d786d33-c5c2-44a6-8273-7a3e43e552ef-6_442_628_314_745} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure} Find the volume of the solid generated when this region is rotated through \(360 ^ { \circ }\) about the \(\boldsymbol { x }\)-axis. Give your answer in an exact form.
OCR MEI C4 Q1
1 Fig. 8 shows a cross-section of a car headlight whose inside reflective surface is modelled, in suitable units, by the curve $$x = 2 t ^ { 2 } , y = 4 t , \quad - \sqrt { 2 } \leqslant t \leqslant \sqrt { 2 } .$$ \(\mathrm { P } \left( 2 t ^ { 2 } , 4 t \right)\) is a point on the curve with parameter \(t\). TS is the tangent to the curve at P , and PR is the line through P parallel to the \(x\)-axis. Q is the point \(( 2,0 )\). The angles that PS and QP make with the positive \(x\)-direction are \(\theta\) and \(\phi\) respectively. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-1_962_1248_673_420} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. By considering the gradient of the tangent TS, show that \(\tan \theta = \frac { 1 } { t }\).
  2. Find the gradient of the line QP in terms of \(t\). Hence show that \(\phi = 2 \theta\), and that angle TPQ is equal to \(\theta\).
    [0pt] [The above result shows that if a lamp bulb is placed at Q , then the light from the bulb is reflected to produce a parallel beam of light.] The inside surface of the headlight has the shape produced by rotating the curve about the \(x\)-axis.
  3. Show that the curve has cartesian equation \(y ^ { 2 } = 8 x\). Hence find the volume of revolution of the curve, giving your answer as a multiple of \(\pi\).
OCR MEI C4 Q2
2 Fig. 3 shows part of the curve \(y = 1 + x ^ { 2 }\), together with the line \(y = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-2_558_716_302_687} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} The region enclosed by the curve, the \(y\)-axis and the line \(y = 2\) is rotated through \(360 ^ { \circ }\) about the \(y\)-axis. Find the volume of the solid generated, giving your answer in terms of \(\pi\).
OCR MEI C4 Q3
3 Fig. 7 shows the curve BC defined by the parametric equations $$x = 5 \ln u , y = u + \frac { 1 } { u } , \quad 1 \leqslant u \leqslant 10$$ The point A lies on the \(x\)-axis and AC is parallel to the \(y\)-axis. The tangent to the curve at C makes an angle \(\theta\) with AC, as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-3_505_585_598_766} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the lengths \(\mathrm { OA } , \mathrm { OB }\) and AC .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\). Hence find the angle \(\theta\).
  3. Show that the cartesian equation of the curve is \(y = \mathrm { e } ^ { \frac { 1 } { 5 } x } + \mathrm { e } ^ { - \frac { 1 } { 5 } x }\). An object is formed by rotating the region OACB through \(360 ^ { \circ }\) about \(\mathrm { O } x\).
  4. Find the volume of the object.
OCR MEI C4 Q4
4 Fig. 2 shows the curve \(y = \sqrt { 1 + x ^ { 2 } }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-4_572_939_551_638} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure}
  1. The following table gives some values of \(x\) and \(y\).
    \(x\)00.250.50.751
    \(y\)11.03081.251.4142
    Find the missing value of \(y\), giving your answer correct to 4 decimal places. Hence show that, using the trapezium rule with four strips, the shaded area is approximately 1.151 square units.
  2. Jenny uses a trapezium rule with 8 strips, and obtains a value of 1.158 square units. Explain why she must have made a mistake.
  3. The shaded area is rotated through \(360 ^ { \circ }\) about the \(x\)-axis. Find the exact volume of the solid of revolution formed.
OCR MEI C4 Q5
5 Fig. 4 shows the curve \(y = \sqrt { 1 + \mathrm { e } ^ { 2 x } }\), and the region between the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-5_657_732_375_667} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Find the exact volume of revolution when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
    1. Complete the table of values, and use the trapezium rule with 4 strips to estimate the area of the shaded region.
      \(x\)00.511.52
      \(y\)1.92832.89644.5919
    2. The trapezium rule for \(\int _ { 0 } ^ { 2 } \sqrt { 1 + \mathrm { e } ^ { 2 x } } \mathrm {~d} x\) with 8 and 16 strips gives 6.797 and 6.823, although not necessarily in that order. Without doing the calculations, say which result is which, explaining your reasoning.
OCR MEI C4 Q6
6 Fig. 8 illustrates a hot air balloon on its side. The balloon is modelled by the volume of revolution about the \(x\)-axis of the curve with parametric equations $$x = 2 + 2 \sin \theta , \quad y = 2 \cos \theta + \sin 2 \theta , \quad ( 0 \leqslant \theta \leqslant 2 \pi ) .$$ The curve crosses the \(x\)-axis at the point \(\mathrm { A } ( 4,0 )\). B and C are maximum and minimum points on the curve. Units on the axes are metres. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-6_812_801_517_706} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\).
  2. Verify that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(\theta = \frac { 1 } { 6 } \pi\), and find the exact coordinates of B . Hence find the maximum width BC of the balloon.
  3. (A) Show that \(y = x \cos \theta\).
    (B) Find \(\sin \theta\) in terms of \(x\) and show that \(\cos ^ { 2 } \theta = x - \frac { 1 } { 4 } x ^ { 2 }\).
    (C) Hence show that the cartesian equation of the curve is \(y ^ { 2 } = x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 }\).
  4. Find the volume of the balloon.
OCR MEI C4 Q1
1 You are given that \(\mathrm { f } ( x ) = \cos x + \lambda \sin x\) where \(\lambda\) is a positive constant.
  1. Express \(\mathrm { f } ( x )\) in the form \(R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\), giving \(R\) and \(\alpha\) in terms of \(\lambda\).
  2. Given that the maximum value (as \(x\) varies) of \(\mathrm { f } ( x )\) is 2 , find \(R , \lambda\) and \(\alpha\), giving your answers in exact form.