OCR MEI C4 — Question 4

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
TopicArea Under & Between Curves

4
  1. Complete the table of values for the curve \(y = \sqrt { \cos x }\).
    \(X\)0\(\frac { \pi } { 8 }\)\(\frac { \pi } { 4 }\)\(\frac { 3 \pi } { 8 }\)\(\frac { \pi } { 2 }\)
    \(y\)0.96120.8409
    Hence use the trapezium rule with strip width \(h = \frac { \pi } { 8 }\) to estimate the value of the integral \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \sqrt { \cos x } \mathrm {~d} x\), giving your answer to 3 decimal places. Fig. 4 shows the curve \(y = \sqrt { \cos x }\) for \(0 \leqslant x \leqslant \frac { \pi } { 2 }\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ce44db53-2ec8-497b-a1d5-a8adf85e3929-4_459_751_799_638} \captionsetup{labelformat=empty} \caption{Fig. 4}
    \end{figure}
  2. State, with a reason, whether the trapezium rule with a strip width of \(\frac { \pi } { 16 }\) would give a larger or smaller estimate of the integral.