OCR MEI C4 — Question 1

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
TopicHarmonic Form

1 You are given that \(\mathrm { f } ( x ) = \cos x + \lambda \sin x\) where \(\lambda\) is a positive constant.
  1. Express \(\mathrm { f } ( x )\) in the form \(R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\), giving \(R\) and \(\alpha\) in terms of \(\lambda\).
  2. Given that the maximum value (as \(x\) varies) of \(\mathrm { f } ( x )\) is 2 , find \(R , \lambda\) and \(\alpha\), giving your answers in exact form.