Questions C3 (1200 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C3 2016 June Q1
1 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \left( 1 + \cos \frac { 1 } { 2 } x \right) \mathrm { d } x\).
OCR MEI C3 2016 June Q2
2 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined by \(\mathrm { f } ( x ) = \ln x\) and \(\mathrm { g } ( x ) = 2 + \mathrm { e } ^ { x }\), for \(x > 0\).
Find the exact value of \(x\), given that \(\mathrm { fg } ( x ) = 2 x\).
OCR MEI C3 2016 June Q3
3 Find \(\int _ { 1 } ^ { 4 } x ^ { - \frac { 1 } { 2 } } \ln x \mathrm {~d} x\), giving your answer in an exact form.
OCR MEI C3 2016 June Q4
4 By sketching the graphs of \(y = | 2 x + 1 |\) and \(y = - x\) on the same axes, show that the equation \(| 2 x + 1 | = - x\) has two roots. Find these roots.
OCR MEI C3 2016 June Q5
5 The volume \(V \mathrm {~m} ^ { 3 }\) of a pile of grain of height \(h\) metres is modelled by the equation $$V = 4 \sqrt { h ^ { 3 } + 1 } - 4$$
  1. Find \(\frac { \mathrm { d } V } { \mathrm {~d} h }\) when \(h = 2\). At a certain time, the height of the pile is 2 metres, and grain is being added so that the volume is increasing at a rate of \(0.4 \mathrm {~m} ^ { 3 }\) per minute.
  2. Find the rate at which the height is increasing at this time.
OCR MEI C3 2016 June Q6
6 Fig. 6 shows part of the curve \(\sin 2 y = x - 1\). P is the point with coordinates \(\left( 1.5 , \frac { 1 } { 12 } \pi \right)\) on the curve. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{414a6b7f-cd96-4fa0-9521-ebe500bab375-2_458_691_1610_687} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(y\). Hence find the exact gradient of the curve \(\sin 2 y = x - 1\) at the point P . The part of the curve shown is the image of the curve \(y = \arcsin x\) under a sequence of two geometrical transformations.
  2. Find \(y\) in terms of \(x\) for the curve \(\sin 2 y = x - 1\). Hence describe fully the sequence of transformations.
    \(7 \quad\) You are given that \(n\) is a positive integer.
    By expressing \(x ^ { 2 n } - 1\) as a product of two factors, prove that \(2 ^ { 2 n } - 1\) is divisible by 3 . Section B (36 marks)
OCR MEI C3 2016 June Q8
8 Fig. 8 shows the curve \(y = \frac { x } { \sqrt { x + 4 } }\) and the line \(x = 5\). The curve has an asymptote \(l\).
The tangent to the curve at the origin O crosses the line \(l\) at P and the line \(x = 5\) at Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{414a6b7f-cd96-4fa0-9521-ebe500bab375-3_643_921_703_573} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Show that for this curve \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x + 8 } { 2 ( x + 4 ) ^ { \frac { 3 } { 2 } } }\).
  2. Find the coordinates of the point P .
  3. Using integration by substitution, find the exact area of the region enclosed by the curve, the tangent OQ and the line \(x = 5\).
OCR MEI C3 2016 June Q9
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \mathrm { e } ^ { 2 x } + k \mathrm { e } ^ { - 2 x }\) and \(k\) is a constant greater than 1 . The curve crosses the \(y\)-axis at P and has a turning point Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{414a6b7f-cd96-4fa0-9521-ebe500bab375-4_783_951_392_557} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find the \(y\)-coordinate of P in terms of \(k\).
  2. Show that the \(x\)-coordinate of Q is \(\frac { 1 } { 4 } \ln k\), and find the \(y\)-coordinate in its simplest form.
  3. Find, in terms of \(k\), the area of the region enclosed by the curve, the \(x\)-axis, the \(y\)-axis and the line \(x = \frac { 1 } { 2 } \ln k\). Give your answer in the form \(a k + b\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \mathrm { f } \left( x + \frac { 1 } { 4 } \ln k \right)\).
  4. (A) Show that \(\mathrm { g } ( x ) = \sqrt { k } \left( \mathrm { e } ^ { 2 x } + \mathrm { e } ^ { - 2 x } \right)\).
    (B) Hence show that \(\mathrm { g } ( x )\) is an even function.
    (C) Deduce, with reasons, a geometrical property of the curve \(y = \mathrm { f } ( x )\). \section*{END OF QUESTION PAPER}
OCR MEI C3 Q1
1 Solve the equation \(| 3 x + 2 | = 1\).
OCR MEI C3 Q7
7 Fig. 7 shows the curve defined implicitly by the equation $$y ^ { 2 } + y = x ^ { 3 } + 2 x ,$$ together with the line \(x = 2\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{185840c8-2799-44cd-a6d8-00d10c038c2c-03_465_378_534_808} \captionsetup{labelformat=empty} \caption{Not to scale}
\end{figure} Fig. 7 Find the coordinates of the points of intersection of the line and the curve.
Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\). Hence find the gradient of the curve at each of these two points.
OCR MEI C3 Q8
8 Fig. 8 shows part of the curve \(y = x \sin 3 x\). It crosses the \(x\)-axis at P . The point on the curve with \(x\)-coordinate \(\frac { 1 } { 6 } \pi\) is Q . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{185840c8-2799-44cd-a6d8-00d10c038c2c-03_421_789_1748_610} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the \(x\)-coordinate of P .
  2. Show that Q lies on the line \(y = x\).
  3. Differentiate \(x \sin 3 x\). Hence prove that the line \(y = x\) touches the curve at Q .
  4. Show that the area of the region bounded by the curve and the line \(y = x\) is \(\frac { 1 } { 72 } \left( \pi ^ { 2 } - 8 \right)\).
OCR MEI C3 Q9
9 The function \(\mathrm { f } ( x ) = \ln \left( 1 + x ^ { 2 } \right)\) has domain \(- 3 \leqslant x \leqslant 3\).
Fig. 9 shows the graph of \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{185840c8-2799-44cd-a6d8-00d10c038c2c-04_540_943_477_550} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Show algebraically that the function is even. State how this property relates to the shape of the curve.
  2. Find the gradient of the curve at the point \(\mathrm { P } ( 2 , \ln 5 )\).
  3. Explain why the function does not have an inverse for the domain \(- 3 \leqslant x \leqslant 3\). The domain of \(\mathrm { f } ( x )\) is now restricted to \(0 \leqslant x \leqslant 3\). The inverse of \(\mathrm { f } ( x )\) is the function \(\mathrm { g } ( x )\).
  4. Sketch the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\) on the same axes. State the domain of the function \(\mathrm { g } ( x )\). Show that \(\mathrm { g } ( x ) = \sqrt { \mathrm { e } ^ { x } - 1 }\).
  5. Differentiate \(\mathrm { g } ( x )\). Hence verify that \(\mathrm { g } ^ { \prime } ( \ln 5 ) = 1 \frac { 1 } { 4 }\). Explain the connection between this result and your answer to part (ii). \section*{OXFORD CAMBRIDGE AND RSA EXAMINATIONS} \section*{Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education} MEI STRUCTURED MATHEMATICS \section*{4753/1} Methods for Advanced Mathematics (C3)
    Wednesday
AQA C3 2007 January Q1
1 Use the mid-ordinate rule with four strips of equal width to find an estimate for \(\int _ { 1 } ^ { 5 } \frac { 1 } { 1 + \ln x } \mathrm {~d} x\), giving your answer to three significant figures.
(4 marks)
AQA C3 2007 January Q2
2 Describe a sequence of two geometrical transformations that maps the graph of \(y = \sec x\) onto the graph of \(y = 1 + \sec 3 x\).
AQA C3 2007 January Q3
3 The functions \(f\) and \(g\) are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = 3 - x ^ { 2 } , & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 2 } { x + 1 } , & \text { for real values of } x , x \neq - 1 \end{array}$$
  1. Find the range of f.
  2. The inverse of g is \(\mathrm { g } ^ { - 1 }\).
    1. Find \(\mathrm { g } ^ { - 1 } ( x )\).
    2. State the range of \(\mathrm { g } ^ { - 1 }\).
  3. The composite function gf is denoted by h .
    1. Find \(\mathrm { h } ( x )\), simplifying your answer.
    2. State the greatest possible domain of h .
AQA C3 2007 January Q4
4
  1. Use integration by parts to find \(\int x \sin x \mathrm {~d} x\).
  2. Using the substitution \(u = x ^ { 2 } + 5\), or otherwise, find \(\int x \sqrt { x ^ { 2 } + 5 } \mathrm {~d} x\).
  3. The diagram shows the curve \(y = x ^ { 2 } - 9\) for \(x \geqslant 0\).
    \includegraphics[max width=\textwidth, alt={}, center]{6890a681-2b7f-4853-a5f0-f88b7b435367-3_844_663_685_694} The shaded region \(R\) is bounded by the curve, the lines \(y = 1\) and \(y = 2\), and the \(y\)-axis. Find the exact value of the volume of the solid generated when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(\boldsymbol { y }\)-axis.
AQA C3 2007 January Q5
5
    1. Show that the equation $$2 \cot ^ { 2 } x + 5 \operatorname { cosec } x = 10$$ can be written in the form \(2 \operatorname { cosec } ^ { 2 } x + 5 \operatorname { cosec } x - 12 = 0\).
    2. Hence show that \(\sin x = - \frac { 1 } { 4 }\) or \(\sin x = \frac { 2 } { 3 }\).
  1. Hence, or otherwise, solve the equation $$2 \cot ^ { 2 } ( \theta - 0.1 ) + 5 \operatorname { cosec } ( \theta - 0.1 ) = 10$$ giving all values of \(\theta\) in radians to two decimal places in the interval \(- \pi < \theta < \pi\).
    (3 marks)
AQA C3 2007 January Q6
6
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when:
    1. \(y = \left( 4 x ^ { 2 } + 3 x + 2 \right) ^ { 10 }\);
    2. \(y = x ^ { 2 } \tan x\).
    1. Find \(\frac { \mathrm { d } x } { \mathrm {~d} y }\) when \(x = 2 y ^ { 3 } + \ln y\).
    2. Hence find an equation of the tangent to the curve \(x = 2 y ^ { 3 } + \ln y\) at the point \(( 2,1 )\).
AQA C3 2007 January Q7
7
  1. Sketch the graph of \(y = | 2 x |\).
  2. On a separate diagram, sketch the graph of \(y = 4 - | 2 x |\), indicating the coordinates of the points where the graph crosses the coordinate axes.
  3. Solve \(4 - | 2 x | = x\).
  4. Hence, or otherwise, solve the inequality \(4 - | 2 x | > x\).
AQA C3 2007 January Q8
8 The diagram shows the curve \(y = \cos ^ { - 1 } x\) for \(- 1 \leqslant x \leqslant 1\).
\includegraphics[max width=\textwidth, alt={}, center]{6890a681-2b7f-4853-a5f0-f88b7b435367-4_492_698_1640_671}
  1. Write down the exact coordinates of the points \(A\) and \(B\).
  2. The equation \(\cos ^ { - 1 } x = 3 x + 1\) has only one root. Given that the root of this equation is \(\alpha\), show that \(0.1 \leqslant \alpha \leqslant 0.2\).
  3. Use the iteration \(x _ { n + 1 } = \frac { 1 } { 3 } \left( \cos ^ { - 1 } x _ { n } - 1 \right)\) with \(x _ { 1 } = 0.1\) to find the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving your answers to three decimal places.
AQA C3 2007 January Q9
9 The sketch shows the graph of \(y = 4 - \mathrm { e } ^ { 2 x }\). The curve crosses the \(y\)-axis at the point \(A\) and the \(x\)-axis at the point \(B\).
\includegraphics[max width=\textwidth, alt={}, center]{6890a681-2b7f-4853-a5f0-f88b7b435367-5_711_921_466_557}
    1. Find \(\int \left( 4 - \mathrm { e } ^ { 2 x } \right) \mathrm { d } x\).
      (2 marks)
    2. Hence show that \(\int _ { 0 } ^ { \ln 2 } \left( 4 - \mathrm { e } ^ { 2 x } \right) \mathrm { d } x = 4 \ln 2 - \frac { 3 } { 2 }\).
    1. Write down the \(y\)-coordinate of \(A\).
    2. Show that \(x = \ln 2\) at \(B\).
  1. Find the equation of the normal to the curve \(y = 4 - \mathrm { e } ^ { 2 x }\) at the point \(B\).
  2. Find the area of the region enclosed by the curve \(y = 4 - \mathrm { e } ^ { 2 x }\), the normal to the curve at \(B\) and the \(y\)-axis.
AQA C3 2008 January Q1
1
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when:
    1. \(y = \left( 2 x ^ { 2 } - 5 x + 1 \right) ^ { 20 }\);
    2. \(y = x \cos x\).
  2. Given that $$y = \frac { x ^ { 3 } } { x - 2 }$$ show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { k x ^ { 2 } ( x - 3 ) } { ( x - 2 ) ^ { 2 } }$$ where \(k\) is a positive integer.
AQA C3 2008 January Q2
2
  1. Solve the equation \(\cot x = 2\), giving all values of \(x\) in the interval \(0 \leqslant x \leqslant 2 \pi\) in radians to two decimal places.
  2. Show that the equation \(\operatorname { cosec } ^ { 2 } x = \frac { 3 \cot x + 4 } { 2 }\) can be written as $$2 \cot ^ { 2 } x - 3 \cot x - 2 = 0$$
  3. Solve the equation \(\operatorname { cosec } ^ { 2 } x = \frac { 3 \cot x + 4 } { 2 }\), giving all values of \(x\) in the interval \(0 \leqslant x \leqslant 2 \pi\) in radians to two decimal places.
AQA C3 2008 January Q3
3 The equation $$x + ( 1 + 3 x ) ^ { \frac { 1 } { 4 } } = 0$$ has a single root, \(\alpha\).
  1. Show that \(\alpha\) lies between - 0.33 and - 0.32 .
  2. Show that the equation \(x + ( 1 + 3 x ) ^ { \frac { 1 } { 4 } } = 0\) can be rearranged into the form $$x = \frac { 1 } { 3 } \left( x ^ { 4 } - 1 \right)$$
  3. Use the iteration \(x _ { n + 1 } = \frac { \left( x _ { n } ^ { 4 } - 1 \right) } { 3 }\) with \(x _ { 1 } = - 0.3\) to find \(x _ { 4 }\), giving your answer to three significant figures.
AQA C3 2008 January Q4
4 The functions f and g are defined with their respective domains by $$\begin{array} { l l } \mathrm { f } ( x ) = x ^ { 3 } , & \text { for all real values of } x
\mathrm {~g} ( x ) = \frac { 1 } { x - 3 } , & \text { for real values of } x , x \neq 3 \end{array}$$
  1. State the range of f.
    1. Find fg(x).
    2. Solve the equation \(\operatorname { fg } ( x ) = 64\).
    1. The inverse of g is \(\mathrm { g } ^ { - 1 }\). Find \(\mathrm { g } ^ { - 1 } ( x )\).
    2. State the range of \(\mathrm { g } ^ { - 1 }\).