Solve the equation \(\cot x = 2\), giving all values of \(x\) in the interval \(0 \leqslant x \leqslant 2 \pi\) in radians to two decimal places.
Show that the equation \(\operatorname { cosec } ^ { 2 } x = \frac { 3 \cot x + 4 } { 2 }\) can be written as
$$2 \cot ^ { 2 } x - 3 \cot x - 2 = 0$$
Solve the equation \(\operatorname { cosec } ^ { 2 } x = \frac { 3 \cot x + 4 } { 2 }\), giving all values of \(x\) in the interval \(0 \leqslant x \leqslant 2 \pi\) in radians to two decimal places.