12. (i) Solve, for \(0 < \theta \leqslant 360 ^ { \circ }\),
$$3 \sin \left( \theta + 30 ^ { \circ } \right) = 2 \cos \left( \theta + 30 ^ { \circ } \right)$$
giving your answers, in degrees, to 2 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
(ii) (a) Given that
$$\frac { \cos ^ { 2 } x + 2 \sin ^ { 2 } x } { 1 - \sin ^ { 2 } x } = 5$$
show that
$$\tan ^ { 2 } x = k , \quad \text { where } k \text { is a constant. }$$
(b) Hence solve, for \(0 < x \leqslant 2 \pi\),
$$\frac { \cos ^ { 2 } x + 2 \sin ^ { 2 } x } { 1 - \sin ^ { 2 } x } = 5$$
giving your answers, in radians, to 3 decimal places.