Edexcel C12 2017 October — Question 15

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2017
SessionOctober
TopicAreas Between Curves

15. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bb1becd5-96c1-426d-9b85-4bbc4a61af27-42_695_1450_251_246} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of part of the graph \(y = \mathrm { f } ( x )\), where $$f ( x ) = \frac { ( x - 3 ) ^ { 2 } ( x + 4 ) } { 2 } , \quad x \in \mathbb { R }$$ The graph cuts the \(y\)-axis at the point \(P\) and meets the positive \(x\)-axis at the point \(R\), as shown in Figure 5.
    1. State the \(y\) coordinate of \(P\).
    2. State the \(x\) coordinate of \(R\). The line segment \(P Q\) is parallel to the \(x\)-axis. Point \(Q\) lies on \(y = \mathrm { f } ( x ) , x > 0\)
  1. Use algebra to show that the \(x\) coordinate of \(Q\) satisfies the equation $$x ^ { 2 } - 2 x - 15 = 0$$
  2. Use part (b) to find the coordinates of \(Q\). The region \(S\), shown shaded in Figure 5, is bounded by the curve \(y = \mathrm { f } ( x )\) and the line segment \(P Q\).
  3. Use calculus to find the exact area of \(S\).