Edexcel C12 2018 October — Question 10

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2018
SessionOctober
TopicAreas Between Curves

10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{1f61f78b-5e77-4758-8ad5-ea00c7dfea2b-28_826_1632_264_153} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The finite region \(R\), which is shown shaded in Figure 1, is bounded by the coordinate axes, the straight line \(l\) with equation \(y = \frac { 1 } { 3 } x + 5\) and the curve \(C\) with equation \(y = 4 x ^ { \frac { 1 } { 2 } } - x + 5 , x \geqslant 0\) The line \(l\) meets the curve \(C\) at the point \(D\) on the \(y\)-axis and at the point \(E\), as shown in Figure 1.
  1. Use algebra to find the coordinates of the points \(D\) and \(E\). The curve \(C\) crosses the \(x\)-axis at the point \(F\).
  2. Verify that the \(x\) coordinate of \(F\) is 25
  3. Use algebraic integration to find the exact area of the shaded region \(R\).