Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C2 2006 June Q5
Easy -1.2
5 The gradient of a curve is given by \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 - x ^ { 2 }\). The curve passes through the point \(( 6,1 )\). Find the equation of the curve.
OCR MEI C2 2006 June Q6
Moderate -0.8
6 A sequence is given by the following. $$\begin{aligned} u _ { 1 } & = 3 \\ u _ { n + 1 } & = u _ { n } + 5 \end{aligned}$$
  1. Write down the first 4 terms of this sequence.
  2. Find the sum of the 51st to the 100th terms, inclusive, of the sequence.
OCR MEI C2 2006 June Q7
Moderate -0.8
7
  1. Sketch the graph of \(y = \cos x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
    On the same axes, sketch the graph of \(y = \cos 2 x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\). Label each graph clearly.
  2. Solve the equation \(\cos 2 x = 0.5\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
OCR MEI C2 2006 June Q8
Easy -1.2
8 Given that \(y = 6 x ^ { 3 } + \sqrt { x } + 3\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
OCR MEI C2 2006 June Q9
Easy -1.2
9 Use logarithms to solve the equation \(5 ^ { 3 x } = 100\). Give your answer correct to 3 decimal places. Section B (36 marks)
OCR MEI C2 2006 June Q10
Standard +0.3
10
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d697f451-9d41-4ef6-a3b0-0ebb0108932c-3_496_1029_395_516} \captionsetup{labelformat=empty} \caption{Fig. 10.1}
    \end{figure} At a certain time, ship S is 5.2 km from lighthouse L on a bearing of \(048 ^ { \circ }\). At the same time, ship T is 6.3 km from L on a bearing of \(105 ^ { \circ }\), as shown in Fig. 10.1. For these positions, calculate
    (A) the distance between ships S and T ,
    (B) the bearing of S from T .
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{d697f451-9d41-4ef6-a3b0-0ebb0108932c-3_444_1025_1487_520} \captionsetup{labelformat=empty} \caption{Fig. 10.2}
    \end{figure} Ship S then travels at \(24 \mathrm {~km} \mathrm {~h} ^ { - 1 }\) anticlockwise along the arc of a circle, keeping 5.2 km from the lighthouse L, as shown in Fig. 10.2. Find, in radians, the angle \(\theta\) that the line LS has turned through in 26 minutes.
    Hence find, in degrees, the bearing of ship S from the lighthouse at this time.
OCR MEI C2 2006 June Q11
Standard +0.3
11 A cubic curve has equation \(y = x ^ { 3 } - 3 x ^ { 2 } + 1\).
  1. Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.
  2. Show that the tangent to the curve at the point where \(x = - 1\) has gradient 9 . Find the coordinates of the other point, \(P\), on the curve at which the tangent has gradient 9 and find the equation of the normal to the curve at P . Show that the area of the triangle bounded by the normal at P and the \(x\) - and \(y\)-axes is 8 square units.
OCR MEI C2 2007 June Q1
Easy -1.3
1
  1. State the exact value of \(\tan 300 ^ { \circ }\).
  2. Express \(300 ^ { \circ }\) in radians, giving your answer in the form \(k \pi\), where \(k\) is a fraction in its lowest terms.
OCR MEI C2 2007 June Q2
Easy -1.3
2 Given that \(y = 6 x ^ { \frac { 3 } { 2 } }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
Show, without using a calculator, that when \(x = 36\) the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) is \(\frac { 3 } { 4 }\).
OCR MEI C2 2007 June Q3
Easy -1.2
3 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2bdf241f-4538-4227-ba00-fe843d1b3aca-2_830_1393_959_334} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure} Fig. 3 shows sketches of three graphs, A, B and C. The equation of graph A is \(y = \mathrm { f } ( x )\). State the equation of
  1. graph B ,
  2. graph C.
OCR MEI C2 2007 June Q4
Easy -1.3
4
  1. Find the second and third terms of the sequence defined by the following. $$\begin{aligned} t _ { n + 1 } & = 2 t _ { n } + 5 \\ t _ { 1 } & = 3 \end{aligned}$$
  2. Find \(\sum _ { k = 1 } ^ { 3 } k ( k + 1 )\).
OCR MEI C2 2007 June Q5
Moderate -0.8
5 A sector of a circle of radius 5 cm has area \(9 \mathrm {~cm} ^ { 2 }\).
Find, in radians, the angle of the sector.
Find also the perimeter of the sector.
OCR MEI C2 2007 June Q6
Moderate -0.8
6
  1. Write down the values of \(\log _ { a } 1\) and \(\log _ { a } a\), where \(a > 1\).
  2. Show that \(\log _ { a } x ^ { 10 } - 2 \log _ { a } \left( \frac { x ^ { 3 } } { 4 } \right) = 4 \log _ { a } ( 2 x )\).
OCR MEI C2 2007 June Q7
Easy -1.2
7
  1. Sketch the graph of \(y = 3 ^ { x }\).
  2. Use logarithms to solve the equation \(3 ^ { x } = 20\). Give your answer correct to 2 decimal places.
OCR MEI C2 2007 June Q8
Moderate -0.8
8
  1. Show that the equation \(2 \cos ^ { 2 } \theta + 7 \sin \theta = 5\) may be written in the form $$2 \sin ^ { 2 } \theta - 7 \sin \theta + 3 = 0$$
  2. By factorising this quadratic equation, solve the equation for values of \(\theta\) between \(0 ^ { \circ }\) and \(180 ^ { \circ }\). Section B (36 marks)
OCR MEI C2 2007 June Q9
Moderate -0.3
9 The equation of a cubic curve is \(y = 2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that the tangent to the curve when \(x = 3\) passes through the point \(( - 1 , - 41 )\).
  2. Use calculus to find the coordinates of the turning points of the curve. You need not distinguish between the maximum and minimum.
  3. Sketch the curve, given that the only real root of \(2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2 = 0\) is \(x = 0.2\) correct to 1 decimal place.
OCR MEI C2 2007 June Q10
Moderate -0.3
10 Fig. 10 shows the speed of a car, in metres per second, during one minute, measured at 10-second intervals. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2bdf241f-4538-4227-ba00-fe843d1b3aca-4_732_748_379_657} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure} The measured speeds are shown below.
Time \(( t\) seconds \()\)0102030405060
Speed \(\left( v \mathrm {~m} \mathrm {~s} ^ { - 1 } \right)\)28191411121622
  1. Use the trapezium rule with 6 strips to find an estimate of the area of the region bounded by the curve, the line \(t = 60\) and the axes. [This area represents the distance travelled by the car.]
  2. Explain why your calculation in part (i) gives an overestimate for this area. Use appropriate rectangles to calculate an underestimate for this area. The speed of the car may be modelled by \(v = 28 - t + 0.015 t ^ { 2 }\).
  3. Show that the difference between the value given by the model when \(t = 10\) and the measured value is less than \(3 \%\) of the measured value.
  4. According to this model, the distance travelled by the car is $$\int _ { 0 } ^ { 60 } \left( 28 - t + 0.015 t ^ { 2 } \right) \mathrm { d } t$$ Find this distance.
OCR MEI C2 2007 June Q11
Moderate -0.3
11
  1. André is playing a game where he makes piles of counters. He puts 3 counters in the first pile. Each successive pile he makes has 2 more counters in it than the previous one.
    1. How many counters are there in his sixth pile?
    2. André makes ten piles of counters. How many counters has he used altogether?
  2. In another game, played with an ordinary fair die and counters, Betty needs to throw a six to start. The probability \(\mathrm { P } _ { n }\) of Betty starting on her \(n\)th throw is given by $$P _ { n } = \frac { 1 } { 6 } \times \left( \frac { 5 } { 6 } \right) ^ { n - 1 }$$
    1. Calculate \(\mathrm { P } _ { 4 }\). Give your answer as a fraction.
    2. The values \(\mathrm { P } _ { 1 } , \mathrm { P } _ { 2 } , \mathrm { P } _ { 3 } , \ldots\) form an infinite geometric progression. State the first term and the common ratio of this progression. Hence show that \(\mathrm { P } _ { 1 } + \mathrm { P } _ { 2 } + \mathrm { P } _ { 3 } + \ldots = 1\).
    3. Given that \(\mathrm { P } _ { n } < 0.001\), show that \(n\) satisfies the inequality $$n > \frac { \log _ { 10 } 0.006 } { \log _ { 10 } \left( \frac { 5 } { 6 } \right) } + 1$$ Hence find the least value of \(n\) for which \(\mathrm { P } _ { n } < 0.001\).
OCR MEI C2 2009 June Q1
Easy -1.8
1 Use an isosceles right-angled triangle to show that \(\cos 45 ^ { \circ } = \frac { 1 } { \sqrt { 2 } }\).
OCR MEI C2 2009 June Q2
Easy -1.2
2 Find \(\int _ { 1 } ^ { 2 } \left( 12 x ^ { 5 } + 5 \right) \mathrm { d } x\).
OCR MEI C2 2009 June Q3
Moderate -0.8
3
  1. Find \(\sum _ { k = 3 } ^ { 8 } \left( k ^ { 2 } - 1 \right)\).
  2. State whether the sequence with \(k\) th term \(k ^ { 2 } - 1\) is convergent or divergent, giving a reason for your answer.
OCR MEI C2 2009 June Q4
Easy -1.2
4 A sector of a circle of radius 18.0 cm has arc length 43.2 cm .
  1. Find in radians the angle of the sector.
  2. Find this angle in degrees, giving your answer to the nearest degree.
OCR MEI C2 2009 June Q5
Moderate -0.8
5
  1. On the same axes, sketch the graphs of \(y = \cos x\) and \(y = \cos 2 x\) for values of \(x\) from 0 to \(2 \pi\).
  2. Describe the transformation which maps the graph of \(y = \cos x\) onto the graph of \(y = 3 \cos x\).
OCR MEI C2 2009 June Q6
Moderate -0.8
6 Use calculus to find the \(x\)-coordinates of the turning points of the curve \(y = x ^ { 3 } - 6 x ^ { 2 } - 15 x\). Hence find the set of values of \(x\) for which \(x ^ { 3 } - 6 x ^ { 2 } - 15 x\) is an increasing function.
OCR MEI C2 2009 June Q7
Moderate -0.8
7 Show that the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) may be written in the form $$4 \sin ^ { 2 } \theta - \sin \theta = 0$$ Hence solve the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).