| Exam Board | OCR MEI |
| Module | C2 (Core Mathematics 2) |
| Year | 2009 |
| Session | June |
| Topic | Trig Equations |
7 Show that the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) may be written in the form
$$4 \sin ^ { 2 } \theta - \sin \theta = 0$$
Hence solve the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).