Questions — OCR MEI S3 (71 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI S3 2012 June Q2
10 marks
2
    1. Give two reasons why an investigator might need to take a sample in order to obtain information about a population.
    2. State two requirements of a sample.
    3. Discuss briefly the advantage of the sampling being random.
    1. Under what circumstances might one use a Wilcoxon single sample test in order to test a hypothesis about the median of a population? What distributional assumption is needed for the test?
    2. On a stretch of road leading out of the centre of a town, highways officials have been monitoring the speed of the traffic in case it has increased. Previously it was known that the median speed on this stretch was 28.7 miles per hour. For a random sample of 12 vehicles on the stretch, the following speeds were recorded. $$\begin{array} { l l l l l l l l l l l l } 32.0 & 29.1 & 26.1 & 35.2 & 34.4 & 28.6 & 32.3 & 28.5 & 27.0 & 33.3 & 28.2 & 31.9 \end{array}$$ Carry out a test, with a \(5 \%\) significance level, to see whether the speed of the traffic on this stretch of road seems to have increased on the whole.
      [0pt] [10]
OCR MEI S3 2012 June Q3
3 The triathlon is a sports event in which competitors take part in three stages, swimming, cycling and running, one straight after the other. The winner is the competitor with the shortest overall time. In this question the times for the separate stages are assumed to be Normally distributed and independent of each other. For a particular triathlon event in which there was a very large number of competitors, the mean and standard deviation of the times, measured in minutes, for each stage were as follows.
Mean
Standard
deviation
Swimming11.072.36
Cycling57.338.76
Running24.233.75
  1. For a randomly chosen competitor, find the probability that the swimming time is between 10 and 13 minutes.
  2. For a randomly chosen competitor, find the probability that the running time exceeds the swimming time by more than 10 minutes.
  3. For a randomly chosen competitor, find the probability that the swimming and running times combined exceed \(\frac { 2 } { 3 }\) of the cycling time.
  4. In a different triathlon event the total times, in minutes, for a random sample of 12 competitors were as follows. $$\begin{array} { l l l l l l l l l l l l } 103.59 & 99.04 & 85.03 & 81.34 & 106.79 & 89.14 & 98.55 & 98.22 & 108.87 & 116.29 & 102.51 & 92.44 \end{array}$$ Find a 95\% confidence interval for the mean time of all competitors in this event.
  5. Discuss briefly whether the assumptions of Normality and independence for the stages of triathlon events are reasonable.
OCR MEI S3 2012 June Q4
4 The numbers of call-outs per day received by a fire station for a random sample of 255 weekdays were recorded as follows.
Number of call-outs012345 or more
Frequency (days)1457922630
The mean number of call-outs per day for these data is 0.6 . A Poisson model, using this sample mean of 0.6 , is fitted to the data, and gives the following expected frequencies (correct to 3 decimal places).
Number of call-outs012345 or more
Expected frequency139.94783.96825.1905.0380.7560.101
  1. Using a \(5 \%\) significance level, carry out a test to examine the goodness of fit of the model to the data. The time \(T\), measured in days, that elapses between successive call-outs can be modelled using the exponential distribution for which \(\mathrm { f } ( t )\), the probability density function, is $$\mathrm { f } ( t ) = \begin{cases} 0 & t < 0 ,
    \lambda \mathrm { e } ^ { - \lambda t } & t \geqslant 0 , \end{cases}$$ where \(\lambda\) is a positive constant.
  2. For the distribution above, it can be shown that \(\mathrm { E } ( T ) = \frac { 1 } { \lambda }\). Given that the mean time between successive call-outs is \(\frac { 5 } { 3 }\) days, write down the value of \(\lambda\).
  3. Find \(\mathrm { F } ( t )\), the cumulative distribution function.
  4. Find the probability that the time between successive call-outs is more than 1 day.
  5. Find the median time that elapses between successive call-outs.
OCR MEI S3 2013 June Q1
1 In the past, the times for workers in a factory to complete a particular task had a known median of 7.4 minutes. Following a review, managers at the factory wish to know if the median time to complete the task has been reduced.
  1. A random sample of 12 times, in minutes, gives the following results. $$\begin{array} { l l l l l l l l l l l l } 6.90 & 7.23 & 6.54 & 7.62 & 7.04 & 7.33 & 6.74 & 6.45 & 7.81 & 7.71 & 7.50 & 6.32 \end{array}$$ Carry out an appropriate test using a \(5 \%\) level of significance.
  2. Some time later, a much larger random sample of times gives the following results. $$n = 80 \quad \sum x = 555.20 \quad \sum x ^ { 2 } = 3863.9031$$ Find a \(95 \%\) confidence interval for the true mean time for the task. Justify your choice of which distribution to use.
  3. Describe briefly one advantage and one disadvantage of having a \(99 \%\) confidence interval instead of a \(95 \%\) confidence interval.
OCR MEI S3 2013 June Q2
2 A company supplying cattle feed to dairy farmers claims that its new brand of feed will increase average milk yields by 10 litres per cow per week. A farmer thinks the increase will be less than this and decides to carry out a statistical investigation using a paired \(t\) test. A random sample of 10 dairy cows are given the new feed and then their milk yields are compared with their yields when on the old feed. The yields, in litres per week, for the 10 cows are as follows.
CowABCDEFGHIJ
Old feed144130132146137140140149138133
New feed148139138159138148146156147145
  1. Why is it sensible to use a paired test?
  2. State the condition necessary for a paired \(t\) test.
  3. Assuming the condition stated in part (ii) is met, carry out the test, using a significance level of \(5 \%\), to see whether it appears that the company's claim is justified.
  4. Find a 95\% confidence interval for the mean increase in the milk yield using the new feed.
OCR MEI S3 2013 June Q3
3 The random variable \(X\) has the following probability density function, \(\mathrm { f } ( x )\). $$f ( x ) = \begin{cases} k x ( x - 5 ) ^ { 2 } & 0 \leqslant x < 5
0 & \text { elsewhere } \end{cases}$$
  1. Sketch \(\mathrm { f } ( x )\).
  2. Find, in terms of \(k\), the cumulative distribution function, \(\mathrm { F } ( x )\).
  3. Hence show that \(k = \frac { 12 } { 625 }\). The random variable \(X\) is proposed as a model for the amount of time, in minutes, lost due to stoppages during a football match. The times lost in a random sample of 60 matches are summarised in the table. The table also shows some of the corresponding expected frequencies given by the model.
    Time (minutes)\(0 \leqslant x < 1\)\(1 \leqslant x < 2\)\(2 \leqslant x < 3\)\(3 \leqslant x < 4\)\(4 \leqslant x < 5\)
    Observed frequency51523116
    Expected frequency17.769.121.632
  4. Find the remaining expected frequencies.
  5. Carry out a goodness of fit test, using a significance level of \(2.5 \%\), to see if the model might be suitable in this context.
OCR MEI S3 2013 June Q4
4 A company that makes meat pies includes a "small" size in its product range. These pies consist of a pastry case and meat filling, the weights of which are independent of each other. The weight of the pastry case, \(C\), is Normally distributed with mean 96 g and variance \(21 \mathrm {~g} ^ { 2 }\). The weight of the meat filling, \(M\), is Normally distributed with mean 57 g and variance \(14 \mathrm {~g} ^ { 2 }\).
  1. Find the probability that, in a randomly chosen pie, the weight of the pastry case is between 90 and 100 g .
  2. The wrappers on the pies state that the weight is 145 g . Find the proportion of pies that are underweight.
  3. The pies are sold in packs of 4 . Find the value of \(w\) such that, in \(95 \%\) of packs, the total weight of the 4 pies in a randomly chosen pack exceeds \(w \mathrm {~g}\).
  4. It is required that the weight of the meat filling in a pie should be at least \(35 \%\) of the total weight. Show that this means that \(0.65 M - 0.35 C \geqslant 0\). Hence find the probability that, in a randomly chosen pie, this requirement is met.
OCR MEI S3 2014 June Q1
1
  1. Let \(X\) be a random variable with variance \(\sigma ^ { 2 }\). The independent random variables \(X _ { 1 }\) and \(X _ { 2 }\) are both distributed as \(X\). Write down the variances of \(X _ { 1 } + X _ { 2 }\) and \(2 X\); explain why they are different. A large company has produced an aptitude test which consists of three parts. The parts are called mathematical ability, spatial awareness and communication. The scores obtained by candidates in the three parts are continuous random variables \(X , Y\) and \(W\) which have been found to have independent Normal distributions with means and standard deviations as shown in the table.
    MeanStandard deviation
    Mathematical ability, \(X\)30.15.1
    Spatial awareness, \(Y\)25.44.2
    Communication, \(W\)28.23.9
  2. Find the probability that a randomly selected candidate obtains a score of less than 22 in the mathematical ability part of the test.
  3. Find the probability that a randomly selected candidate obtains a total score of at least 100 in the whole test.
  4. For a particular role in the company, the score \(2 X + Y\) is calculated. Find the score that is exceeded by only \(2 \%\) of candidates.
  5. For a different role, a candidate must achieve a score in communication which is at least \(60 \%\) of the score obtained in mathematical ability. What proportion of candidates do not achieve this?
OCR MEI S3 2014 June Q2
2
  1. Explain what is meant by a simple random sample. A manufacturer produces tins of paint which nominally contain 1 litre. The quantity of paint delivered by the machine that fills the tins can be assumed to be a Normally distributed random variable. The machine is designed to deliver an average of 1.05 litres to each tin. However, over time paint builds up in the delivery nozzle of the machine, reducing the quantity of paint delivered. Random samples of 10 tins are taken regularly from the production process. If a significance test, carried out at the \(5 \%\) level, suggests that the average quantity of paint delivered is less than 1.02 litres, the machine is cleaned.
  2. By carrying out an appropriate test, determine whether or not the sample below leads to the machine being cleaned. $$\begin{array} { l l l l l l l l l l } 0.994 & 1.010 & 1.021 & 1.015 & 1.016 & 1.022 & 1.009 & 1.007 & 1.011 & 1.026 \end{array}$$ Each time the machine has been cleaned, a random sample of 10 tins is taken to determine whether or not the average quantity of paint delivered has returned to 1.05 litres.
  3. On one occasion after the machine has been cleaned, the quality control manager thinks that the distribution of the quantity of paint is symmetrical but not necessarily Normal. The sample on this occasion is as follows.
    1.0551.0641.0631.0431.0621.0701.0591.0441.054
    1.053
    By carrying out an appropriate test at the \(5 \%\) level of significance, determine whether or not this sample supports the conclusion that the average quantity of paint delivered is 1.05 litres.
OCR MEI S3 2014 June Q3
3
  1. A personal trainer believes that drinking a glass of beetroot juice an hour before exercising enables endurance tests to be completed more quickly. To test his belief he takes a random sample of 12 of his trainees and, on two occasions, asks them to carry out 100 repetitions of a particular exercise as quickly as possible. Each trainee drinks a glass of water on one occasion and a glass of beetroot juice on the other occasion. The times in seconds taken by the trainees are given in the table.
    TraineeWaterBeetroot juice
    A75.172.9
    B86.279.9
    C77.371.6
    D89.190.2
    E67.968.2
    F101.595.2
    G82.576.5
    H83.380.2
    I102.599.1
    J91.382.2
    K92.590.1
    L77.277.9
    The trainer wishes to test his belief using a paired \(t\) test at the \(1 \%\) level of significance. Assuming any necessary assumptions are valid, carry out a test of the hypotheses \(\mathrm { H } _ { 0 } : \mu _ { D } = 0 , \mathrm { H } _ { 1 } : \mu _ { D } < 0\), where \(\mu _ { D }\) is the population mean difference in times (time with beetroot juice minus time with water).
  2. An ornithologist believes that the number of birds landing on the bird feeding station in her garden in a given interval of time during the morning should follow a Poisson distribution. In order to test her belief, she makes the following observations in 60 randomly chosen minutes one morning.
    Number of birds0123456\(\geqslant 7\)
    Frequency25101714741
    Given that the data in the table have a mean value of 3.3, use a goodness of fit test, with a significance level of \(5 \%\), to investigate whether the ornithologist is justified in her belief.
OCR MEI S3 2014 June Q4
4 The probability density function of a random variable \(X\) is given by $$\mathrm { f } ( x ) = \begin{cases} k x & 0 \leqslant x \leqslant a
k ( 2 a - x ) & a < x \leqslant 2 a
0 & \text { otherwise } \end{cases}$$ where \(a\) and \(k\) are positive constants.
  1. Sketch \(\mathrm { f } ( x )\). Hence explain why \(\mathrm { E } ( X ) = a\).
  2. Show that \(k = \frac { 1 } { a ^ { 2 } }\).
  3. Find \(\operatorname { Var } ( X )\) in terms of \(a\). In order to estimate the value of \(a\), a random sample of size 50 is taken from the distribution. It is found that the sample mean and standard deviation are \(\bar { x } = 1.92\) and \(s = 0.8352\).
  4. Construct a symmetrical \(95 \%\) confidence interval for \(a\). Give one reason why the answer is only approximate.
  5. A non-statistician states that the probability that \(a\) lies in the interval found in part (iv) is 0.95 . Comment on this statement. \section*{END OF QUESTION PAPER} \section*{OCR \(^ { \text {® } }\)}
OCR MEI S3 2016 June Q1
1 A game consists of 20 rounds. Each round is denoted as either a starter, middle or final round. The times taken for each round are independently and Normally distributed with the following parameters (given in seconds).
Type of roundMeanStandard deviation
Starter20015
Middle22025
Final25020
The game consists of 4 starter, 12 middle and 4 final rounds. Find the probability that
  1. the mean time per round for the 4 final rounds will exceed 260 seconds,
  2. all 20 rounds will be completed in a total time of 75 minutes or less,
  3. the 12 middle rounds will take at least 3.5 times as long in total as the 4 starter rounds,
  4. the mean time per round for the 12 middle rounds will be at least 25 seconds less than the mean time per round for the 4 final rounds.
OCR MEI S3 2016 June Q2
2
  1. A genetic model involving body colour and eye colour of fruit flies predicts that offspring will consist of four phenotypes in the ratio \(9 : 3 : 3 : 1\). A random sample of 200 such offspring is taken. Their phenotypes are found to be as follows.
    PhenotypeBrown body Red eyeBrown body Brown eyeBlack body Red eyeBlack body Brown eye
    Frequency12537326
    Relative proportion from model9331
    Carry out a test, using a \(2.5 \%\) level of significance, of the goodness of fit of the genetic model to these data.
  2. The median length of European fruit flies is 2.5 mm . South American fruit flies are believed to be larger than European fruit flies. A random sample of 12 South American fruit flies is taken. The flies are found to have the following lengths (in mm).
    \(1.7 \quad 1.4\)
    \(3.1 \quad 3.5\)
    3.8
    4.2
    2.2
    2.9
    4.4
    2.6
    \(3.9 \quad 3.2\) Carry out a Wilcoxon signed rank test, using a \(5 \%\) level of significance, to test this belief.
OCR MEI S3 2016 June Q3
3 The random variable \(X\) has the following probability density function: $$\mathrm { f } ( x ) = \begin{cases} k \left( 1 - x ^ { 2 } \right) & - 1 \leqslant x \leqslant 1
0 & \text { elsewhere } \end{cases}$$ where \(k\) is a positive constant.
  1. Calculate the value of \(k\).
  2. Sketch the probability density function.
  3. Calculate \(\operatorname { Var } ( X )\).
  4. Find a cubic equation satisfied by the upper quartile \(q\), and hence verify that \(q = 0.35\) to 2 decimal places.
  5. A random sample of 40 values of \(X\) is taken. Using a suitable approximating distribution, calculate the probability that the mean of these values is greater than 0.125 . Justify your choice of distribution.
OCR MEI S3 2016 June Q4
4 An insurance company is investigating a new system designed to reduce the average time taken to process claim forms. The company has decided to use 10 experienced employees to process claims using the old system and the new system. Two procedures for comparing the systems are proposed.
Procedure \(A\) There are two sets of claim forms, set 1 and set 2. Each contains the same number of forms. Each employee processes set 1 on the old system and set 2 on the new system. The times taken are compared. Procedure \(B\) There is just one set of claim forms which each employee processes firstly on the old system and then on the new system. The times taken are compared.
  1. State one weakness of each of these procedures. In fact a third procedure which avoids these two weaknesses is adopted. In this procedure each employee is given a randomly selected set of claim forms. Each set contains the same number of forms. The employees each process their set of claim forms on both systems. The times taken, in minutes, are shown in the table.
    Employee12345678910
    Old system40.542.952.851.777.266.765.249.255.658.3
    New system39.240.750.650.771.470.571.147.752.155.5
  2. Carry out a paired \(t\) test at the \(5 \%\) level of significance to investigate whether the mean length of time taken to process a set of forms has reduced using the new system.
  3. State fully the usual conditions for a paired \(t\) test.
  4. Construct a \(99 \%\) confidence interval for the mean reduction in time taken to process a set of forms using the new system.
OCR MEI S3 2008 January Q1
1
  1. The time (in milliseconds) taken by my computer to perform a particular task is modelled by the random variable \(T\). The probability that it takes more than \(t\) milliseconds to perform this task is given by the expression \(\mathrm { P } ( T > t ) = \frac { k } { t ^ { 2 } }\) for \(t \geqslant 1\), where \(k\) is a constant.
    1. Write down the cumulative distribution function of \(T\) and hence show that \(k = 1\).
    2. Find the probability density function of \(T\).
    3. Find the mean time for the task.
  2. For a different task, the times (in milliseconds) taken by my computer on 10 randomly chosen occasions were as follows. $$\begin{array} { c c c c c c c c c c } 6.4 & 5.9 & 5.0 & 6.2 & 6.8 & 6.0 & 5.2 & 6.5 & 5.7 & 5.3 \end{array}$$ From past experience it is thought that the median time for this task is 5.4 milliseconds. Carry out a test at the \(5 \%\) level of significance to investigate this, stating your hypotheses carefully.
OCR MEI S3 2008 January Q2
2 In the vegetable section of a local supermarket, leeks are on sale either loose (and unprepared) or prepared in packs of 4 . The weights of unprepared leeks are modelled by the random variable \(X\) which has the Normal distribution with mean 260 grams and standard deviation 24 grams. The prepared leeks have had \(40 \%\) of their weight removed, so that their weights, \(Y\), are modelled by \(Y = 0.6 X\).
  1. Find the probability that a randomly chosen unprepared leek weighs less than 300 grams.
  2. Find the probability that a randomly chosen prepared leek weighs more than 175 grams.
  3. Find the probability that the total weight of 4 randomly chosen prepared leeks in a pack is less than 600 grams.
  4. What total weight of prepared leeks in a randomly chosen pack of 4 is exceeded with probability 0.975 ?
  5. Sandie is making soup. She uses 3 unprepared leeks and 2 onions. The weights of onions are modelled by the Normal distribution with mean 150 grams and standard deviation 18 grams. Find the probability that the total weight of her ingredients is more than 1000 grams.
  6. A large consignment of unprepared leeks is delivered to the supermarket. A random sample of 100 of them is taken. Their weights have sample mean 252.4 grams and sample standard deviation 24.6 grams. Find a \(99 \%\) confidence interval for the true mean weight of the leeks in this consignment.
OCR MEI S3 2008 January Q3
3 Engineers in charge of a chemical plant need to monitor the temperature inside a reaction chamber. Past experience has shown that when functioning correctly the temperature inside the chamber can be modelled by a Normal distribution with mean \(380 ^ { \circ } \mathrm { C }\). The engineers are concerned that the mean operating temperature may have fallen. They decide to test the mean using the following random sample of 12 recent temperature readings.
374.0378.1363.0357.0377.9388.4
379.6372.4362.4377.3385.2370.6
  1. Give three reasons why a \(t\) test would be appropriate.
  2. Carry out the test using a \(5 \%\) significance level. State your hypotheses and conclusion carefully.
  3. Find a 95\% confidence interval for the true mean temperature in the reaction chamber.
  4. Describe briefly one advantage and one disadvantage of having a 99\% confidence interval instead of a 95\% confidence interval.
OCR MEI S3 2008 January Q4
4
  1. In Germany, towards the end of the nineteenth century, a study was undertaken into the distribution of the sexes in families of various sizes. The table shows some data about the numbers of girls in 500 families, each with 5 children. It is thought that the binomial distribution \(\mathrm { B } ( 5 , p )\) should model these data.
    Number of girlsNumber of families
    032
    1110
    2154
    3125
    463
    516
    1. Use this information to calculate an estimate for the mean number of girls per family of 5 children. Hence show that 0.45 can be taken as an estimate of \(p\).
    2. Investigate at a \(5 \%\) significance level whether the binomial model with \(p\) estimated as 0.45 fits the data. Comment on your findings and also on the extent to which the conditions for a binomial model are likely to be met.
  2. A researcher wishes to select 50 families from the 500 in part (a) for further study. Suggest what sort of sample she might choose and describe how she should go about choosing it.
OCR MEI S3 Q2
2 Geoffrey is a university lecturer. He has to prepare five questions for an examination. He knows by experience that it takes about 3 hours to prepare a question, and he models the time (in minutes) taken to prepare one by the Normally distributed random variable \(X\) with mean 180 and standard deviation 12, independently for all questions.
  1. One morning, Geoffrey has a gap of 2 hours 50 minutes ( 170 minutes) between other activities. Find the probability that he can prepare a question in this time.
  2. One weekend, Geoffrey can devote 14 hours to preparing the complete examination paper. Find the probability that he can prepare all five questions in this time. A colleague, Helen, has to check the questions.
  3. She models the time (in minutes) to check a question by the Normally distributed random variable \(Y\) with mean 50 and standard deviation 6, independently for all questions and independently of \(X\). Find the probability that the total time for Geoffrey to prepare a question and Helen to check it exceeds 4 hours.
  4. When working under pressure of deadlines, Helen models the time to check a question in a different way. She uses the Normally distributed random variable \(\frac { 1 } { 4 } X\), where \(X\) is as above. Find the length of time, as given by this model, which Helen needs to ensure that, with probability 0.9 , she has time to check a question. Ian, an educational researcher, suggests that a better model for the time taken to prepare a question would be a constant \(k\) representing "thinking time" plus a random variable \(T\) representing the time required to write the question itself, independently for all questions.
  5. Taking \(k\) as 45 and \(T\) as Normally distributed with mean 120 and standard deviation 10 (all units are minutes), find the probability according to Ian's model that a question can be prepared in less than 2 hours 30 minutes. Juliet, an administrator, proposes that the examination should be reduced in time and shorter questions should be used.
  6. Juliet suggests that Ian's model should be used for the time taken to prepare such shorter questions but with \(k = 30\) and \(T\) replaced by \(\frac { 3 } { 5 } T\). Find the probability as given by this model that a question can be prepared in less than \(1 \frac { 3 } { 4 }\) hours.
OCR MEI S3 Q4
10 marks
4 Quality control inspectors in a factory are investigating the lengths of glass tubes that will be used to make laboratory equipment.
  1. Data on the observed lengths of a random sample of 200 glass tubes from one batch are available in the form of a frequency distribution as follows.
  2. Use a suitable statistical procedure to assess the goodness of fit of \(X\) to these data. Discuss your conclusions briefly. 2 A bus route runs from the centre of town A through the town's urban area to a point B on its boundary and then through the country to a small town C . Because of traffic congestion and general road conditions, delays occur on both the urban and the country sections. All delays may be considered independent. The scheduled time for the journey from A to B is 24 minutes. In fact, journey times over this section are given by the Normally distributed random variable \(X\) with mean 26 minutes and standard deviation 3 minutes. The scheduled time for the journey from B to C is 18 minutes. In fact, journey times over this section are given by the Normally distributed random variable \(Y\) with mean 15 minutes and standard deviation 2 minutes. Journey times on the two sections of route may be considered independent. The timetable published to the public does not show details of times at intermediate points; thus, if a bus is running early, it merely continues on its journey and is not required to wait.
  3. Find the probability that a journey from A to B is completed in less than the scheduled time of 24 minutes.
  4. Find the probability that a journey from A to C is completed in less than the scheduled time of 42 minutes.
  5. It is proposed to introduce a system of bus lanes in the urban area. It is believed that this would mean that the journey time from A to B would be given by the random variable \(0.85 X\). Assuming this to be the case, find the probability that a journey from A to B would be completed in less than the currently scheduled time of 24 minutes.
  6. An alternative proposal is to introduce an express service. This would leave out some bus stops on both sections of the route and its overall journey time from A to C would be given by the random variable \(0.9 X + 0.8 Y\). The scheduled time from A to C is to be given as a whole number of minutes. Find the least possible scheduled time such that, with probability 0.75 , buses would complete the journey on time or early.
  7. A programme of minor road improvements is undertaken on the country section. After their completion, it is thought that the random variable giving the journey time from B to C is still Normally distributed with standard deviation 2 minutes. A random sample of 15 journeys is found to have a sample mean journey time from B to C of 13.4 minutes. Provide a two-sided \(95 \%\) confidence interval for the population mean journey time from B to C . 3 An employer has commissioned an opinion polling organisation to undertake a survey of the attitudes of staff to proposed changes in the pension scheme. The staff are categorised as management, professional and administrative, and it is thought that there might be considerable differences of opinion between the categories. There are 60,140 and 300 staff respectively in the categories. The budget for the survey allows for a sample of 40 members of staff to be selected for in-depth interviews.
  8. Explain why it would be unwise to select a simple random sample from all the staff.
  9. Discuss whether it would be sensible to consider systematic sampling.
  10. What are the advantages of stratified sampling in this situation?
  11. State the sample sizes in each category if stratified sampling with as nearly as possible proportional allocation is used. The opinion polling organisation needs to estimate the average wealth of staff in the categories, in terms of property, savings, investments and so on. In a random sample of 11 professional staff, the sample mean is \(\pounds 345818\) and the sample standard deviation is \(\pounds 69241\).
  12. Assuming the underlying population is Normally distributed, test at the \(5 \%\) level of significance the null hypothesis that the population mean is \(\pounds 300000\) against the alternative hypothesis that it is greater than \(\pounds 300000\). Provide also a two-sided \(95 \%\) confidence interval for the population mean.
    [0pt] [10] 4 A company has many factories. It is concerned about incidents of trespassing and, in the hope of reducing if not eliminating these, has embarked on a programme of installing new fencing.
  13. Records for a random sample of 9 factories of the numbers of trespass incidents in typical weeks before and after installation of the new fencing are as follows.
  14. Find the probability that, on a randomly chosen visit, it takes less than 50 minutes to mow the lawns.
  15. Find the probability that, on a randomly chosen visit, the total time for hoeing and pruning is less than 50 minutes.
  16. If Bill mows the lawns while Ben does the hoeing and pruning, find the probability that, on a randomly chosen visit, Ben finishes first. Bill and Ben do my gardening twice a month and send me an invoice at the end of the month.
  17. Write down the mean and variance of the total time (in minutes) they spend on mowing, hoeing and pruning per month.
  18. The company charges for the total time spent at 15 pence per minute. There is also a fixed charge of \(\pounds 10\) per month. Find the probability that the total charge for a month does not exceed \(\pounds 40\). 4 (a) An amateur weather forecaster has been keeping records of air pressure, measured in atmospheres. She takes the measurement at the same time every day using a barometer situated in her garden. A random sample of 100 of her observations is summarised in the table below. The corresponding expected frequencies for a Normal distribution, with its two parameters estimated by sample statistics, are also shown in the table.
  19. Find the probability that the weekly takings for coaches are less than \(\pounds 40000\).
  20. Find the probability that the weekly takings for lorries exceed the weekly takings for cars.
  21. Find the probability that over a 4 -week period the total takings for cars exceed \(\pounds 225000\). What assumption must be made about the four weeks?
  22. Each week the operator allocates part of the takings for repairs. This is determined for each type of vehicle according to estimates of the long-term damage caused. It is calculated as follows: \(5 \%\) of takings for cars, \(10 \%\) for coaches and \(20 \%\) for lorries. Find the probability that in any given week the total amount allocated for repairs will exceed \(\pounds 20000\). 3 The management of a large chain of shops aims to reduce the level of absenteeism among its workforce by means of an incentive bonus scheme. In order to evaluate the effectiveness of the scheme, the management measures the percentage of working days lost before and after its introduction for each of a random sample of 11 shops. The results are shown below.
  23. Give three reasons why a \(t\) test would be appropriate.
  24. Carry out the test using a \(5 \%\) significance level. State your hypotheses and conclusion carefully.
  25. Find a 95\% confidence interval for the true mean temperature in the reaction chamber.
  26. Describe briefly one advantage and one disadvantage of having a 99\% confidence interval instead of a 95\% confidence interval. 4 (a) In Germany, towards the end of the nineteenth century, a study was undertaken into the distribution of the sexes in families of various sizes. The table shows some data about the numbers of girls in 500 families, each with 5 children. It is thought that the binomial distribution \(\mathrm { B } ( 5 , p )\) should model these data.
  27. The grower intends to perform a \(t\) test to examine whether there is any difference in the mean yield of the two types of plant. State the hypotheses he should use and also any necessary assumption.
  28. Carry out the test using a \(5 \%\) significance level.
    (b) The tea grower deals with many types of tea and employs tasters to rate them. The tasters do this by giving each tea a score out of 100. The tea grower wishes to compare the scores given by two of the tasters. Their scores for a random selection of 10 teas are as follows. A Wilcoxon signed rank test is to be used to decide whether there is any evidence of a preference for one of the uniforms.
  29. Explain why this test is appropriate in these circumstances and state the hypotheses that should be used.
  30. Carry out the test at the \(5 \%\) significance level. 4 A random variable \(X\) has probability density function \(\mathrm { f } ( x ) = \frac { 2 x } { \lambda ^ { 2 } }\) for \(0 < x < \lambda\), where \(\lambda\) is a positive constant.
  31. Show that, for any value of \(\lambda , \mathrm { f } ( x )\) is a valid probability density function.
  32. Find \(\mu\), the mean value of \(X\), in terms of \(\lambda\) and show that \(\mathrm { P } ( X < \mu )\) does not depend on \(\lambda\).
  33. Given that \(\mathrm { E } \left( X ^ { 2 } \right) = \frac { \lambda ^ { 2 } } { 2 }\), find \(\sigma ^ { 2 }\), the variance of \(X\), in terms of \(\lambda\). The random variable \(X\) is used to model the depth of the space left by the filling machine at the top of a jar of jam. The model gives the following probabilities for \(X\) (whatever the value of \(\lambda\) ).
  34. Initially it is assumed that the value of \(p\) is \(\frac { 1 } { 2 }\). Test at the \(5 \%\) level of significance whether it is reasonable to suppose that the model applies with \(p = \frac { 1 } { 2 }\).
  35. The model is refined by estimating \(p\) from the data. Find the mean of the observed data and hence an estimate of \(p\).
  36. Using the estimated value of \(p\), the value of the test statistic \(X ^ { 2 }\) turns out to be 2.3857 . Is it reasonable to suppose, at the \(5 \%\) level of significance, that this refined model applies?
  37. Discuss the reasons for the different outcomes of the tests in parts (i) and (iii). 2 (a) A continuous random variable, \(X\), has probability density function $$f ( x ) = \begin{cases} \frac { 1 } { 72 } \left( 8 x - x ^ { 2 } \right) & 2 \leqslant x \leqslant 8
    0 & \text { otherwise } \end{cases}$$
  38. Find \(\mathrm { F } ( x )\), the cumulative distribution function of \(X\).
  39. Sketch \(\mathrm { F } ( x )\).
  40. The median of \(X\) is \(m\). Show that \(m\) satisfies the equation \(m ^ { 3 } - 12 m ^ { 2 } + 148 = 0\). Verify that \(m \approx 4.42\).
    (b) The random variable in part (a) is thought to model the weights, in kilograms, of lambs at birth. The birth weights, in kilograms, of a random sample of 12 lambs, given in ascending order, are as follows. $$\begin{array} { l l l l l l l l l l l l } 3.16 & 3.62 & 3.80 & 3.90 & 4.02 & 4.72 & 5.14 & 6.36 & 6.50 & 6.58 & 6.68 & 6.78 \end{array}$$ Test at the 5\% level of significance whether a median of 4.42 is consistent with these data. 3 Cholesterol is a lipid (fat) which is manufactured by the liver from the fatty foods that we eat. It plays a vital part in allowing the body to function normally. However, when high levels of cholesterol are present in the blood there is a risk of arterial disease. Among the factors believed to assist with achieving and maintaining low cholesterol levels are weight loss and exercise. A doctor wishes to test the effectiveness of exercise in lowering cholesterol levels. For a random sample of 12 of her patients, she measures their cholesterol levels before and after they have followed a programme of exercise. The measurements obtained are as follows. This sample is to be tested to see whether the campaign appears to have been successful in raising the percentage receiving the booster.
  41. Explain why the use of paired data is appropriate in this context.
  42. Carry out an appropriate Wilcoxon signed rank test using these data, at the \(5 \%\) significance level.
    (b) Benford's Law predicts the following probability distribution for the first significant digit in some large data sets.
    Digit123456789
    Probability0.3010.1760.1250.0970.0790.0670.0580.0510.046
    On one particular day, the first significant digits of the stock market prices of the shares of a random sample of 200 companies gave the following results.
    Digit123456789
    Frequency55342716151712159
    Test at the \(10 \%\) level of significance whether Benford's Law provides a reasonable model in the context of share prices. 4 A random variable \(X\) has an exponential distribution with probability density function \(\mathrm { f } ( x ) = \lambda \mathrm { e } ^ { - \lambda x }\) for \(x \geqslant 0\), where \(\lambda\) is a positive constant.
  43. Verify that \(\int _ { 0 } ^ { \infty } \mathrm { f } ( x ) \mathrm { d } x = 1\) and sketch \(\mathrm { f } ( x )\).
  44. In this part of the question you may use the following result. $$\int _ { 0 } ^ { \infty } x ^ { r } \mathrm { e } ^ { - \lambda x } \mathrm {~d} x = \frac { r ! } { \lambda ^ { r + 1 } } \quad \text { for } r = 0,1,2 , \ldots$$ Derive the mean and variance of \(X\) in terms of \(\lambda\). The random variable \(X\) is used to model the lifetime, in years, of a particular type of domestic appliance. The manufacturer of the appliance states that, based on past experience, the mean lifetime is 6 years.
  45. Let \(\bar { X }\) denote the mean lifetime, in years, of a random sample of 50 appliances. Write down an approximate distribution for \(\bar { X }\).
  46. A random sample of 50 appliances is found to have a mean lifetime of 7.8 years. Does this cast any doubt on the model?