OCR MEI S3 2016 June — Question 3

Exam BoardOCR MEI
ModuleS3 (Statistics 3)
Year2016
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeSingle-piece PDF with k

3 The random variable \(X\) has the following probability density function: $$\mathrm { f } ( x ) = \begin{cases} k \left( 1 - x ^ { 2 } \right) & - 1 \leqslant x \leqslant 1
0 & \text { elsewhere } \end{cases}$$ where \(k\) is a positive constant.
  1. Calculate the value of \(k\).
  2. Sketch the probability density function.
  3. Calculate \(\operatorname { Var } ( X )\).
  4. Find a cubic equation satisfied by the upper quartile \(q\), and hence verify that \(q = 0.35\) to 2 decimal places.
  5. A random sample of 40 values of \(X\) is taken. Using a suitable approximating distribution, calculate the probability that the mean of these values is greater than 0.125 . Justify your choice of distribution.