OCR MEI S3 2014 June — Question 2

Exam BoardOCR MEI
ModuleS3 (Statistics 3)
Year2014
SessionJune
TopicHypothesis test of a normal distribution

2
  1. Explain what is meant by a simple random sample. A manufacturer produces tins of paint which nominally contain 1 litre. The quantity of paint delivered by the machine that fills the tins can be assumed to be a Normally distributed random variable. The machine is designed to deliver an average of 1.05 litres to each tin. However, over time paint builds up in the delivery nozzle of the machine, reducing the quantity of paint delivered. Random samples of 10 tins are taken regularly from the production process. If a significance test, carried out at the \(5 \%\) level, suggests that the average quantity of paint delivered is less than 1.02 litres, the machine is cleaned.
  2. By carrying out an appropriate test, determine whether or not the sample below leads to the machine being cleaned. $$\begin{array} { l l l l l l l l l l } 0.994 & 1.010 & 1.021 & 1.015 & 1.016 & 1.022 & 1.009 & 1.007 & 1.011 & 1.026 \end{array}$$ Each time the machine has been cleaned, a random sample of 10 tins is taken to determine whether or not the average quantity of paint delivered has returned to 1.05 litres.
  3. On one occasion after the machine has been cleaned, the quality control manager thinks that the distribution of the quantity of paint is symmetrical but not necessarily Normal. The sample on this occasion is as follows.
    1.0551.0641.0631.0431.0621.0701.0591.0441.054
    1.053
    By carrying out an appropriate test at the \(5 \%\) level of significance, determine whether or not this sample supports the conclusion that the average quantity of paint delivered is 1.05 litres.