OCR MEI S3 2013 June — Question 3

Exam BoardOCR MEI
ModuleS3 (Statistics 3)
Year2013
SessionJune
TopicChi-squared distribution

3 The random variable \(X\) has the following probability density function, \(\mathrm { f } ( x )\). $$f ( x ) = \begin{cases} k x ( x - 5 ) ^ { 2 } & 0 \leqslant x < 5
0 & \text { elsewhere } \end{cases}$$
  1. Sketch \(\mathrm { f } ( x )\).
  2. Find, in terms of \(k\), the cumulative distribution function, \(\mathrm { F } ( x )\).
  3. Hence show that \(k = \frac { 12 } { 625 }\). The random variable \(X\) is proposed as a model for the amount of time, in minutes, lost due to stoppages during a football match. The times lost in a random sample of 60 matches are summarised in the table. The table also shows some of the corresponding expected frequencies given by the model.
    Time (minutes)\(0 \leqslant x < 1\)\(1 \leqslant x < 2\)\(2 \leqslant x < 3\)\(3 \leqslant x < 4\)\(4 \leqslant x < 5\)
    Observed frequency51523116
    Expected frequency17.769.121.632
  4. Find the remaining expected frequencies.
  5. Carry out a goodness of fit test, using a significance level of \(2.5 \%\), to see if the model might be suitable in this context.