13 The complex number \(z\) is defined as \(z = \frac { 1 } { 3 } \mathrm { e } ^ { \mathrm { i } \theta }\) where \(0 < \theta < \frac { 1 } { 2 } \pi\).
On an Argand diagram, the point O represents the complex number 0 , and the points \(P _ { 1 } , P _ { 2 } , P _ { 3 } , \ldots\) represent the complex numbers \(z , z ^ { 2 } , z ^ { 3 } , \ldots\) respectively.
- Write down each of the following.
- The ratio of the lengths \(\mathrm { OP } _ { n + 1 } : \mathrm { OP } _ { n }\)
- The angle \(\mathrm { P } _ { n + 1 } \mathrm { OP } _ { n }\)
- Show that \(\left( 3 - \mathrm { e } ^ { \mathrm { i } \theta } \right) \left( 3 - \mathrm { e } ^ { - \mathrm { i } \theta } \right) = \mathrm { a } + \mathrm { b } \cos \theta\), where \(a\) and \(b\) are integers to be determined.
- By considering the sum to infinity of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots\), show that
$$\frac { 1 } { 3 } \sin \theta + \frac { 1 } { 9 } \sin 2 \theta + \frac { 1 } { 27 } \sin 3 \theta + \ldots = \frac { 3 \sin \theta } { 10 - 6 \cos \theta } .$$