OCR MEI Further Pure Core 2020 November — Question 13

Exam BoardOCR MEI
ModuleFurther Pure Core (Further Pure Core)
Year2020
SessionNovember
TopicHyperbolic functions

13
  1. Using exponentials, prove that \(\sinh 2 x = 2 \cosh x \sinh x\).
  2. Hence show that if \(\mathrm { f } ( x ) = \sinh ^ { 2 } x\), then \(\mathrm { f } ^ { \prime \prime } ( x ) = 2 \cosh 2 x\).
  3. Explain why the coefficients of odd powers in the Maclaurin series for \(\sinh ^ { 2 } x\) are all zero.
  4. Find the coefficient of \(x ^ { n }\) in this series when \(n\) is a positive even number.