A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q13
OCR MEI Further Pure Core 2020 November — Question 13
Exam Board
OCR MEI
Module
Further Pure Core (Further Pure Core)
Year
2020
Session
November
Topic
Hyperbolic functions
13
Using exponentials, prove that \(\sinh 2 x = 2 \cosh x \sinh x\).
Hence show that if \(\mathrm { f } ( x ) = \sinh ^ { 2 } x\), then \(\mathrm { f } ^ { \prime \prime } ( x ) = 2 \cosh 2 x\).
Explain why the coefficients of odd powers in the Maclaurin series for \(\sinh ^ { 2 } x\) are all zero.
Find the coefficient of \(x ^ { n }\) in this series when \(n\) is a positive even number.
This paper
(16 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11
Q12
Q13
Q14
Q15
Q16