A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Hyperbolic functions
Q4
OCR MEI FP2 2006 June — Question 4
Exam Board
OCR MEI
Module
FP2 (Further Pure Mathematics 2)
Year
2006
Session
June
Topic
Hyperbolic functions
4
Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that $$1 + 2 \sinh ^ { 2 } x = \cosh 2 x$$
Solve the equation $$2 \cosh 2 x + \sinh x = 5 ,$$ giving the answers in an exact logarithmic form.
Show that \(\int _ { 0 } ^ { \ln 3 } \sinh ^ { 2 } x \mathrm {~d} x = \frac { 10 } { 9 } - \frac { 1 } { 2 } \ln 3\).
Find the exact value of \(\int _ { 3 } ^ { 5 } \sqrt { x ^ { 2 } - 9 } \mathrm {~d} x\).
This paper
(5 questions)
View full paper
Q1
Q2
Q3
Q4
Q5