OCR MEI FP2 2006 June — Question 3

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2006
SessionJune
Topic3x3 Matrices

3
  1. Find the inverse of the matrix \(\left( \begin{array} { r r r } 4 & 1 & k
    3 & 2 & 5
    8 & 5 & 13 \end{array} \right)\), where \(k \neq 5\).
  2. Solve the simultaneous equations $$\begin{aligned} & 4 x + y + 7 z = 12
    & 3 x + 2 y + 5 z = m
    & 8 x + 5 y + 13 z = 0 \end{aligned}$$ giving \(x , y\) and \(z\) in terms of \(m\).
  3. Find the value of \(p\) for which the simultaneous equations $$\begin{aligned} & 4 x + y + 5 z = 12
    & 3 x + 2 y + 5 z = p
    & 8 x + 5 y + 13 z = 0 \end{aligned}$$ have solutions, and find the general solution in this case.