OCR MEI FP2 2006 June — Question 1

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2006
SessionJune
TopicPolar coordinates

1
  1. A curve has polar equation \(r = a ( \sqrt { 2 } + 2 \cos \theta )\) for \(- \frac { 3 } { 4 } \pi \leqslant \theta \leqslant \frac { 3 } { 4 } \pi\), where \(a\) is a positive constant.
    1. Sketch the curve.
    2. Find, in an exact form, the area of the region enclosed by the curve.
    1. Find the Maclaurin series for the function \(\mathrm { f } ( x ) = \tan \left( \frac { 1 } { 4 } \pi + x \right)\), up to the term in \(x ^ { 2 }\).
    2. Use the Maclaurin series to show that, when \(h\) is small, $$\int _ { - h } ^ { h } x ^ { 2 } \tan \left( \frac { 1 } { 4 } \pi + x \right) \mathrm { d } x \approx \frac { 2 } { 3 } h ^ { 3 } + \frac { 4 } { 5 } h ^ { 5 }$$