| Question | Answer | Marks | AO | Guidance | |||||||||||||||||
| 1 | (a) | \(\begin{aligned} | 0.25 + 0.36 + x + x ^ { 2 } = 1 | ||||||||||||||||||
| x ^ { 2 } + x - 0.39 = 0 | |||||||||||||||||||||
| x = 0.3 \text { (or } - 1.3 \text { ) } | |||||||||||||||||||||
| x \text { cannot be negative } | |||||||||||||||||||||
| \mathrm { E } ( W ) = 2.23 | |||||||||||||||||||||
| \mathrm { E } \left( W ^ { 2 } \right) = \Sigma w ^ { 2 } \mathrm { p } ( w ) \quad [ = 5.83 ] | |||||||||||||||||||||
| \text { Subtract } [ \mathrm { E } ( W ) ] ^ { 2 } \text { to get } \mathbf { 0 . 8 5 7 1 } \end{aligned}\) | \(\begin{gathered} \text { M1 } | ||||||||||||||||||||
| \text { A1 } | |||||||||||||||||||||
| \text { A1 } | |||||||||||||||||||||
| \text { B1ft } | |||||||||||||||||||||
| \text { B1 } | |||||||||||||||||||||
| \text { M1 } | |||||||||||||||||||||
| \text { A1 } | |||||||||||||||||||||
| { [ 7 ] } \end{gathered}\) |
|
|
| ||||||||||||||||||
| 1 | (b) | \(9 \times 0.8571 = 7.7139\) |
| 1.1b | Allow 7.71 or 7.714 | ||||||||||||||||
| 2 | (a) | Flaws must occur at constant average rate (uniform rate) |
| 1.2 |
| Not "constant rate" or "average constant rate". | |||||||||||||||
| 2 | (b) | \(\operatorname { Po(2.1)~or~ } e ^ { - \lambda } \frac { \lambda ^ { 3 } } { 3 ! }\) |
|
| Po(2.1) stated or implied, or formula with \(\lambda = 2.1\) stated Awrt 0.189 | ||||||||||||||||
| 2 | (c) |
|
|
|
|
| |||||||||||||||
| Question | Answer | Marks | AO | Guidance | |||||||||||||||||||||||||
| 3 | (a) | 0.4(00) |
|
| SC: if B0, give SC B1 for two of \(S _ { x x } = 12500 , S _ { y y } = 1600 , S _ { x y } = 1790\) and \(S _ { x y } / \sqrt { } \left( S _ { x x } S _ { y y } \right)\) | Also allow SC B1 for equivalent methods using Covariance \ | SDs | ||||||||||||||||||||||
| 3 | (b) | Data needs to have a bivariate normal distribution |
| 1.2 | Needs "bivariate normal" or clear equivalent. Not just "both normally distributed" | Allow "scatter diagram forms ellipse" | |||||||||||||||||||||||
| 3 | (c) |
|
|
|
|
| |||||||||||||||||||||||
| 3 | (d) | It makes no difference as this is a linear transformation |
| 2.2a | Need both "unchanged" oe and reason, need "linear" or exact equivalent | "oe" includes "their 0.4" | |||||||||||||||||||||||
| 4 | (a) | Neither |
| 2.5 | OE | Not "neither is independent of the other" | |||||||||||||||||||||||
| 4 | (b) | \(c = 2.848 - 0.1567 m \quad \mathbf { B C }\) |
|
|
|
| |||||||||||||||||||||||
| Question | Answer | Marks | AO | Guidance | ||||||||||||||
| 4 | (c) | \(a\) unchanged, \(b\) multiplied by 2.2 (allow " \(a\) unchanged, \(b\) increases", etc) | B1 [1] | 2.2a | oe, e.g. \(c = 2.848 - 0.345 m\); \(m = 7.114 - 2.196 c\) | SC: \(m\) on \(c\) in (b): Both divided by 2.2 B1 | ||||||||||||
| 4 | (d) |
|
|
| Needs M2 and "minimises" and "sums of squares" oe |
| ||||||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| oe | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AO | Guidance | |||||||||||||||||||||
| 1 | (a) |
|
|
|
| ||||||||||||||||||||
| 1 | (b) |
|
|
|
| ||||||||||||||||||||
| 1 | (c) | Orders on one day are independent of orders on the other |
| 3.2b | Use "orders independent", clearly referred to the two different days, needs context [not "events"], and nothing else | Not anything affecting given separate Poissons, such as "orders must be independent" or "constant average rate". | |||||||||||||||||||
| \multirow[t]{3}{*}{2} | \multirow[t]{3}{*}{(a)} | \multirow{3}{*}{} |
|
|
|
| 3/3 for \(\frac { 1 } { 30 }\) www | ||||||||||||||||||
| Alternative: \(7 \times \frac { 6 } { 10 } \times \frac { 4 } { 9 } \times \frac { 5 } { 8 } \times \frac { 3 } { 7 } \times \frac { 4 } { 6 } \times \frac { 2 } { 5 } \times \frac { 3 } { 4 } \times \frac { 1 } { 3 } \times \frac { 2 } { 2 } \times \frac { 1 } { 1 }\) |
|
| |||||||||||||||||||||||
| [3] | |||||||||||||||||||||||||
| \multirow[t]{3}{*}{2} | \multirow[t]{3}{*}{(b)} | \multirow{3}{*}{} |
|
|
|
|
| ||||||||||||||||||
|
| Signs alternating, at least one term \(\sqrt { }\) Allow one term omitted or wrong Correct answer | |||||||||||||||||||||||
| [3] | |||||||||||||||||||||||||
| Three together: \(7 \times 6 \times \frac { 6 ! 4 ! } { 10 ! } = \frac { 1 } { 5 }\) | Two pairs: \(\frac { 7 \times 6 } { 2 } \times \frac { 6 ! 4 ! } { 10 ! }\) | \(\frac { 1 } { 10 }\) | One pair: \(7 \times \frac { 6 \times 5 } { 2 } \times \frac { 6 ! 4 ! } { 10 ! } = \frac { 1 } { 2 }\) | ||||||||||||||||||||||
| Question | Answer | Marks | AO | Guidance | |||||||||||||||||||||
| 3 | (a) |
|
|
|
|
| |||||||||||||||||||
| 3 | (b) | (i) | -0.534 |
|
| SC: if B0, give B1 for two of 1440, 2066, -921 and \(S _ { x y } / \sqrt { } \left( S _ { x x } S _ { y y } \right)\) | -0.53: B1 | ||||||||||||||||||
| 3 | (b) | (ii) | 6 candidates did very well or very badly on both papers; middle 10 tended to do badly on one paper and well on the other |
| 2.4 | Correct inference about scores oe, not "correlation/association/value of \(r\) ". Not "outliers" or "anomalies". | Allow inference for one group only, provided it is clearly for only one group \ | any ref to other group is not wrong | |||||||||||||||||
| 4 | (a) | \(10 p ( 1 - p )\) |
| 1.2 | Allow \(10 p q\) oe, e.g. \(10 p - 10 p ^ { 2 }\) | Not just \(n p ( 1 - p )\) | |||||||||||||||||||
| 4 | (b) | (i) |
|
|
|
| Or \(1 - 0.3 \left( 1 + 0.7 + 0.7 ^ { 2 } + 0.7 ^ { 3 } \right)\) Allow M1 if also \(0.3 \times 0.7 ^ { 4 }\) [0.15 is from binomial] | ||||||||||||||||||
| 4 | (b) | (ii) | \(q / p ^ { 2 } = \frac { 70 } { 9 }\) or \(7.777 \ldots\) |
| 1.1 | Allow 7.78, 7.778, etc | Allow 8 only if evidence, e.g. ( \(1 - 0.3\) )/ \(0.3 ^ { 2 }\) | ||||||||||||||||||
| 4 | (c) | \(\begin{aligned} | ( 1 - p ) ^ { 2 } p = \frac { 4 } { 25 } p | ||||||||||||||||||||||
| p = 0 \text { or } ( 1 - p ) ^ { 2 } = \frac { 4 } { 25 } \quad ( p \neq 0 ) | |||||||||||||||||||||||||
| ( 1 - p ) = \pm \frac { 2 } { 5 } | |||||||||||||||||||||||||
| p \neq \frac { 7 } { 5 } | |||||||||||||||||||||||||
| p = \frac { 3 } { 5 } \end{aligned}\) |
|
|
|
| |||||||||||||||||||||
| \(x\) | 7 | 8 | 12 | 6 | 4 |
| \(y\) | 20 | 16 | 7 | 17 | 23 |
| Account | A | B | C | D | E | F | G | H |
| \(p\) | 1.6 | 2.1 | 2.4 | 2.7 | 2.8 | 3.3 | 5.2 | 8.4 |
| \(q\) | 1.6 | 2.3 | 2.2 | 2.2 | 3.1 | 2.9 | 7.6 | 4.8 |
| Question | Solution | Marks | AOs | Guidance | ||||||||||||||||||||||
| 1 | (a) | -0.954 BC | B2 [2] | 1.1 1.1 | SC: If B0, give B1 if two of 7.04, 29.0[4], -13.6[4] (or 35.2, 145[.2], -68.2) seen | |||||||||||||||||||||
| 1 | (b) | Points lie close to a straight line Line has negative gradient | B1 B1 [2] | 2.2b 1.1 | Must refer to line, not just "negative correlation" | |||||||||||||||||||||
| 1 | (c) | No, it will be the same as \(x \rightarrow a\) is a linear transformation | B1 [1] | 2.2a | OE. Either "same" with correct reason, or "disagree" with correct reason. Allow any clear valid technical term | |||||||||||||||||||||
| 2 | (a) | Neither | B1 [1] | 1.2 | ||||||||||||||||||||||
| 2 | (b) | \(q = 1.13 + 0.620 p\) | B1B1 B1 [3] | 1.1,1.1 1.1 | 0.62(0) correct; both numbers correct Fully correct answer including letters | |||||||||||||||||||||
| 2 | (c) | (i) | 2.68 | B1ft [1] | 1.1 | awrt 2.68, ft on their (b) if letters correct | ||||||||||||||||||||
| 2 | (c) | (ii) | 2.5 is within data range, and points (here) are close to line/well correlated | B1 B1 [2] | 2.2b 2.2b | At least one reason, allow "no because points not close to line" Full argument, two reasons needed | ||||||||||||||||||||
| 2 | (d) |
| M1 A1 [2] | 2.3 1.1 | Reason for not very reliable (not "extrapolation") Full argument and conclusion, not too assertive (not wholly unreliable!) | |||||||||||||||||||||
| 3 | (a) | Expected frequency for Middle/25 to 60 is 4.4 which is < 5 so must combine cells | B1*ft depB1 [2] | 2.4 3.5b | Correctly obtain this \(F _ { E }\), ft on addition errors " < 5" explicit and correct deduction | |||||||||||||||||||||
| 3 | (b) |
| B1 | 1.1 |
| |||||||||||||||||||||
| Question | Solution | Marks | AOs | Guidance | ||||||||||||||||||||||||||||||
| 3 | (c) |
|
|
|
| |||||||||||||||||||||||||||||
| 3 | (d) | The two biggest contributions to \(\chi ^ { 2 }\) are both for the late session ... ... when the proportion of younger people is higher, and of older people is lower, than the null hypothesis would suggest. |
|
|
| |||||||||||||||||||||||||||||
| \multirow[t]{2}{*}{4} | \multirow{2}{*}{} | \multirow{2}{*}{OR:} |
|
|
|
| ||||||||||||||||||||||||||||
| \(\frac { 2 m ( 2 m - 1 ) \times m \times 3 ! } { 3 m ( 3 m - 1 ) ( 3 m - 2 ) \times 2 }\) then as above |
| |||||||||||||||||||||||||||||||||
| Question | Answer | Mark | AO | Guidance | |||||||||||||||||||||
| 1 | (a) | \(\frac { 1 } { 0.2 } = 5\) | M1 A1 [2] | 3.3 1.1 | Geometric distribution soi 5 (or \(5.00 \ldots\) ) only | ||||||||||||||||||||
| 1 | (b) | \(0.8 ^ { 2 } - 0.8 ^ { 10 }\) \(= \mathbf { 0 . 5 3 3 } \quad ( 0.5326258 \ldots )\) | М1 A1 [2] | 1.1 3.4 |
| Or \(0.2 \left( 0.8 ^ { 2 } + \ldots . + 0.8 ^ { 9 } \right) , \pm 1\) term at either end [0.506, 0.378, 0.275, 0.405, 0.302, 0.554, 0.426, 0.324] | |||||||||||||||||||
| 1 | (c) |
|
|
|
|
| |||||||||||||||||||
| Question | Answer | Mark | AO | Guidance | |||||||||||||||||||||
| 2 | (a) | Test is for rankings/rankings arbitrary/not bivariate normal etc | B1 [1] | 2.4 | OE | ||||||||||||||||||||
| 2 | (b) |
|
|
|
| ||||||||||||||||||||
|
|
| FT on their \(\Sigma d ^ { 2 }\) only | ||||||||||||||||||||||
| 2 | (c) | Not dependent on any distributional assumptions |
| 1.2 | Oe (cf. Specification, 5.08f) | ||||||||||||||||||||
| Question | Answer | Mark | AO | Guidance | |||||||||||||
| 3 | (a) | Failures occur to no fixed pattern/are not predictable | B1 [1] | 1.1 | OE. NOT "independent" | ||||||||||||
| 3 | (b) | Failures occur independently of one another and at constant average rate |
|
|
| ||||||||||||
| 3 | (c) |
|
|
|
| ||||||||||||
| 3 | (d) | \(\mathrm { e } ^ { - 1.61 }\) |
| 3.4 | Exact needed, allow even if \(0 !\) or \(1.61 ^ { 0 }\) or both left in | ||||||||||||
| 3 | (e) |
|
|
|
| ||||||||||||
| 3 | (f) | \(\mathrm { P } ( F = 1 )\) will be smaller as single failures are less likely |
|
| OE. Partial answer: B1 | ||||||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||
| 4 | (a) | \(\cos \theta = \frac { 1 } { 2 }\) or \(\sin \theta = \frac { \sqrt { 3 } } { 2 }\) | M1 | 3.1b | Must be clear where it comes from ie. Shown in diagram or clear use of distances. May be other way round | \(\theta\) is the angle between the string and the direction of \(A B\) when the string initially becomes taut | ||
| A1 | 3.1b | Working must be seen | ||||||
| \(\begin{aligned} | v \sin \theta = ( 1 + m ) V | |||||||
| V = \frac { \sqrt { 3 } v } { 2 ( 1 + m ) } | ||||||||
| I = m V \text { or } I = \pm ( V - v \sin \theta ) | ||||||||
| V = \frac { v \times \frac { 1 } { 2 } \sqrt { 3 } } { 1 + m } \Rightarrow I = \frac { \sqrt { 3 } m v } { 2 ( 1 + m ) } \end{aligned}\) | A1 | 2.2a | AG Justification of using Impulse = change in momentum | |||||
| [4] | ||||||||
| 4 | (b) | \(\begin{aligned} | \mathrm { KE } = \frac { 1 } { 2 } \left( V ^ { 2 } + ( v \cos \theta ) ^ { 2 } \right) \text { soi } | |||||
| \mathrm { KE } = \frac { 1 } { 2 } \left( \left( \frac { \sqrt { 3 } v } { 2 ( 1 + m ) } \right) ^ { 2 } + \left( v \times \frac { 1 } { 2 } \right) ^ { 2 } \right) | ||||||||
| \mathrm { KE } = \frac { v ^ { 2 } \left( 4 + 2 m + m ^ { 2 } \right) } { 8 ( 1 + m ) ^ { 2 } } \end{aligned}\) | M1 | 3.1b | Transverse component unchanged and using their longitudinal component | Condone consideration of speed squared or inclusion of m in KE | ||||
| М1 | 1.1 | Substituting in for \(V\) and \(\cos \theta\) (could just be in speed equation) | ||||||
| A1 | 1.1 | Or any equivalent single algebraic fraction | ||||||
| [3] | ||||||||
| 4 | (c) |
| B1 | 3.2a | If m is very large then \(A\) is approximately stationary or \(B\) has only its transverse velocity of \(\frac { 1 } { 2 } v\) after the string becomes taut | |||
| B1 | 2.2b | |||||||
| [2] | ||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||||||
| 2 | (b) | (ii) |
| B1 | 3.4 | Allow the idea that \(v = 2.5 f\) for large \(t\), and allow technically inaccurate statements (eg "v speeds up") provided that intent is clear | SC: If B0B1B0 or B0B0B0 awarded. If mentions \(v\) approaches \(2.5 f\) for cases 1 and 3 award B1 or if mentions \(v\) increases in case 1 and \(v\) decreases in case 3 award B1 | |||||
| B1 | 3.4 | |||||||||||
| B1 | 3.4 | See above | ||||||||||
| [3] | ||||||||||||
| 2 | (c) | \multirow[b]{5}{*}{
| 1.1 | |||||||||
| 3.4 | Could be in a definite integral | |||||||||||
| \(\begin{aligned} | \frac { \mathrm { d } x } { \mathrm {~d} t } = \frac { 1 } { 2 } \left( 5 - \mathrm { e } ^ { - \frac { 4 } { 45 } t } \right) f \text { oe } | |||||||||||
| x = 2.5 f t + \frac { 45 } { 8 } f \mathrm { e } ^ { - \frac { 4 } { 45 } t } + c ^ { \prime } | ||||||||||||
| \Rightarrow c ^ { \prime } = - \frac { 45 } { 8 } f \text { and use of } t = 9 \text { to find } x | ||||||||||||
| x = \frac { 45 } { 8 } \left( 3 + \mathrm { e } ^ { - 0.8 } \right) f \end{aligned}\) | \includegraphics[max width=\textwidth, alt={}]{439ec1f0-60b8-4272-98cc-0c30d116c4cf-11_491_63_799_1606} | , or \(x = \left[ 2.5 f t + \frac { 45 } { 8 } f \mathrm { e } ^ { - \frac { 4 } { 45 } t } \right] _ { 0 } ^ { 9 }\) with | ||||||||||
| 1.1 | ||||||||||||
| Question | Answer | Marks | AOs | Guidance | ||
| \multirow{10}{*}{3} | \multirow{10}{*}{(a)} | M1 A1 | 3.3 1.1 | Conservation of energy | \(\theta\) is the angle between \(O P\) and the upward vertical | |
| B1 | 1.1 | NII for \(P\) at point where it is about to lose contact with surface. | Could see contact force, \(C\), later set to 0 | |||
| \(\frac { 1 } { 2 } m v ^ { 2 } + m \gamma r \cos \theta = m \gamma r \cos \alpha\) oe \(v ^ { 2 } + 2 \gamma r \cos \theta = \frac { 3 } { 2 } \gamma r\) \(m \gamma \cos \theta \quad ( - C ) = m a\) \(a = \frac { v ^ { 2 } } { r }\) \(\cos \theta = \frac { a } { \gamma } = \frac { v ^ { 2 } } { \gamma r }\) | М1 | 2.2a | Use previous two results to relate \(v\) and \(\cos \theta\) | |||
| \(\nu ^ { 2 } = \frac { 1 } { 2 } \gamma r\) | A1 | 2.2a | for \(v\) or \(v ^ { 2 }\) or \(\cos \theta = \frac { 1 } { 2 }\) | |||
| \(r \cos \theta = \left( \sqrt { \frac { 1 } { 2 } \gamma r } \sin \theta \right) t + \frac { 1 } { 2 } \gamma t ^ { 2 }\) | M1 | 3.4 | Use of \(s = u t + \frac { 1 } { 2 } a t ^ { 2 }\) using their vertical component of v as u where v has come from consideration of theta | Or use of trajectory eqn: \(y = x \tan \theta + \frac { \gamma x ^ { 2 } } { 2 v ^ { 2 } \cos ^ { 2 } \theta } \text { with }\) | ||
| \(t ^ { 2 } + \sqrt { \frac { 3 r } { 2 \gamma } } t - \frac { r } { \gamma } = 0\) \(t = \frac { 1 } { 4 } \sqrt { \frac { r } { \gamma } } ( \sqrt { 22 } - \sqrt { 6 } )\) | *M1 | 1.1 | Reduction to 3 term quadratic with numerical values for trig ratios | \(8 x ^ { 2 } + 2 \sqrt { 3 } r x - r ^ { 2 } = 0\) | ||
| Dep* M1 | 1.1 | |||||
| \(O F = r \sin \theta + \sqrt { \frac { 1 } { 2 } \gamma r } \cos \theta \times \frac { 1 } { 4 } \sqrt { \frac { r } { \gamma } } ( \sqrt { 22 } - \sqrt { 6 } )\) | Dep* M1 | 3.4 | Find \(O F\) | \(x = \frac { \sqrt { 11 } - \sqrt { 3 } } { 8 } r\) | ||
| \(O F = \frac { r } { 8 } ( \sqrt { 11 } + 3 \sqrt { 3 } ) \quad\) oe | A1 | 1.1 | ||||
| [11] | ||||||
| Question | Answer | Marks | AOs | Guidance | |||
| 3 | (b) | Unchanged since \(O F\) does not depend on \(\gamma\) |
| 3.5a | |||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||||||
| \multirow[t]{3}{*}{3} | \multirow[t]{3}{*}{(e)} | \(\mathrm { e } ^ { - k t } = \frac { g - k v } { g } \quad\) so \(t \rightarrow \infty , \Rightarrow v _ { T } = \frac { g } { k }\) | B1 | 3.4 | ||||||||
| Alternative method \(\frac { \mathrm { d } v } { \mathrm {~d} t } = 0 \Rightarrow m g - 6 \pi \eta r v _ { T } = 0 \Rightarrow v _ { T } = \frac { m g } { 6 \pi \eta r } = \frac { g } { k }\) | B1 | |||||||||||
| [1] | ||||||||||||
| 3 | (f) |
|
|
| ||||||||
| Question | Answer | Marks | AOs | Guidance | |||||||||||||||||||||||||
| 4 | (a) | The central radius is a line of symmetry of the shape. | B1 [1] | 2.4 | Allow equal area each side | ||||||||||||||||||||||||
| 4 | (b) |
|
|
|
| Must see change from double angle | |||||||||||||||||||||||
| 4 | (c) |
|
|
|
|
| |||||||||||||||||||||||
| 4 | (d) |
|
|
| May see \(M g\) and \(m g\) | ||||||||||||||||||||||||
| Abbreviations used in the mark scheme | Meaning |
| dep* | Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark |
| cao | Correct answer only |
| ое | Or equivalent |
| rot | Rounded or truncated |
| soi | Seen or implied |
| www | Without wrong working |
| AG | Answer given |
| awrt | Anything which rounds to |
| BC | By Calculator |
| DR | This question included the instruction: In this question you must show detailed reasoning. |
| Question | Answer | Marks | AOs | Guidance | ||||||||||
| 1 | (a) |
|
|
| Using WD = F.x | |||||||||
| 1 | (b) | \(1500 / 5 = 300 \mathrm {~W}\) |
| 1.1a | Their 1500 | Must be a scalar value | ||||||||
| \multirow[t]{3}{*}{1} | \multirow[t]{3}{*}{(c)} |
|
|
|
| Can use their WD for M mark | ||||||||
|
| complete method involving constant acceleration formula(e) | ||||||||||||
| [2] | ||||||||||||||
| Question | Answer | Marks | AOs | Guidance | ||||||||||||||
| 2 | (a) | \(\begin{aligned} | \bar { x } = \frac { \int _ { 0 } ^ { 5 } x ( 6 + \sin x ) \mathrm { d } x } { \int _ { 0 } ^ { 5 } ( 6 + \sin x ) \mathrm { d } x } = \frac { 72.622 \ldots } { 30.716 \ldots } | |||||||||||||||
| = \frac { 72.622 \ldots } { 30.716 \ldots } = 2.36 ( 3 \mathrm { sf } ) \end{aligned}\) |
|
|
| |||||||||||||||
| 2 | (b) | \(\bar { y } = \frac { \int _ { 0 } ^ { 5 } \frac { 1 } { 2 } ( 6 + \sin x ) ^ { 2 } \mathrm {~d} x } { \int _ { 0 } ^ { 5 } ( 6 + \sin x ) \mathrm { d } x } = \frac { 95.616 \ldots } { 30.716 \ldots }\) |
|
| BC Attempt to use formula and either top or bottom correct soi | |||||||||||||
| 2 | (c) |
|
|
| eg The binding has no mass or the binding is very small so that the mass is concentrated at the hinge or the binding is smooth eg The badge is modelled as a particle or the badge is uniform | |||||||||||||
| 2 | (d) |
|
|
| Total 'clockwise' moment about binding axis (allow inclusion of \(g\) if consistent)... ...equals 'anticlockwise' moment |
| ||||||||||||
| Question | Answer | Marks | AOs | Guidance | |||||||||||||||||||||||||
| \multirow[t]{3}{*}{3} | \multirow[t]{3}{*}{(a)} | \(\begin{aligned} | u _ { A y } = \sqrt { 3 } \text { or awrt } 1.73 | ||||||||||||||||||||||||||
| v _ { A y } = u _ { A y } ( = \sqrt { 3 } ) | |||||||||||||||||||||||||||||
| \binom { 1 } { \sqrt { 3 } } \cdot \binom { v _ { A x } } { \sqrt { 3 } } = 0 \Rightarrow v _ { A x } = - 3 | |||||||||||||||||||||||||||||
| 3 \times 2 \cos 60 ^ { \circ } + 4 \times - 5 = 3 \times - 3 + 4 v _ { B x } | |||||||||||||||||||||||||||||
| v _ { B x } = - 2 | |||||||||||||||||||||||||||||
| e = \frac { - 2 - - 3 } { 2 \cos 60 ^ { \circ } - - 5 } | |||||||||||||||||||||||||||||
| e = \frac { 1 } { 6 } \text { or awrt } 0.17 \end{aligned}\) |
|
|
|
| |||||||||||||||||||||||||
|
|
| \(\begin{aligned} | 3 v _ { A x } + 4 v _ { B x } = - 17 | |||||||||||||||||||||||||
| v _ { B x } - v _ { A x } = 6 e \end{aligned}\) | |||||||||||||||||||||||||||||
| [7] | |||||||||||||||||||||||||||||