Questions — OCR (4619 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR Further Mechanics 2020 November Q7
12 marks Challenging +1.8
7 Fig. 7.1 shows a uniform lamina in the shape of a sector of a circle of radius \(r\) and angle \(2 \theta\) where \(\theta\) is in radians. The sector consists of a triangle \(O A B\) and a segment bounded by the chord \(A B\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{831ba5da-df19-43bb-b163-02bbddb4e2b8-6_364_556_342_246} \captionsetup{labelformat=empty} \caption{Fig. 7.1}
\end{figure}
  1. Explain why the centre of mass of the segment lies on the radius through the midpoint of \(A B\).
  2. Show that the distance of the centre of mass of the segment from \(O\) is \(\frac { 2 r \sin ^ { 3 } \theta } { 3 ( \theta - \sin \theta \cos \theta ) }\). A uniform circular lamina of radius 5 units is placed with its centre at the origin, \(O\), of an \(x - y\) coordinate system. A component for a machine is made by removing and discarding a segment from the lamina. The radius of the circle from which the segment is formed is 3 units and the centre of this circle is \(O\). The centre of the straight edge of the segment has coordinates ( 0,2 ) and this edge is perpendicular to the \(y\)-axis (see Fig. 7.2). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{831ba5da-df19-43bb-b163-02bbddb4e2b8-6_766_757_1400_244} \captionsetup{labelformat=empty} \caption{Fig. 7.2}
    \end{figure}
  3. Find the \(y\)-coordinate of the centre of mass of the component, giving your answer correct to 3 significant figures.
    \(C\) is the point on the component with coordinates ( 0,5 ). The component is now placed horizontally and supported only at \(O\). A particle of mass \(m \mathrm {~kg}\) is placed on the component at \(C\) and the component and particle are in equilibrium.
  4. Find the mass of the component in terms of \(m\).
OCR Further Mechanics 2020 November Q8
9 marks Challenging +1.2
8 One end of a light elastic string of natural length \(l \mathrm {~m}\) and modulus of elasticity \(\lambda \mathrm { N }\) is attached to a particle \(A\) of mass \(m \mathrm {~kg}\). The other end of the string is attached to a fixed point \(O\) which is on a horizontal surface. The surface is modelled as being smooth and \(A\) moves in a circular path around \(O\) with constant speed \(v \mathrm {~ms} ^ { - 1 }\). The extension of the string is denoted by \(x \mathrm {~m}\).
  1. Show that \(x\) satisfies \(\lambda x ^ { 2 } + \lambda | x - | m v ^ { 2 } = 0\).
  2. By solving the equation in part (a) and using a binomial series, show that if \(\lambda\) is very large then \(\lambda \mathrm { x } \approx \mathrm { mv } ^ { 2 }\).
  3. By considering the tension in the string, explain how the result obtained when \(\lambda\) is very large relates to the situation when the string is inextensible. The nature of the horizontal surface is such that the modelling assumption that it is smooth is justifiable provided that the speed of the particle does not exceed \(7 \mathrm {~ms} ^ { - 1 }\). In the case where \(m = 0.16\) and \(\lambda = 260\), the extension of the string is measured as being 3.0 cm .
  4. Estimate the value of \(v\).
  5. Explain whether the value of \(v\) means that the modelling assumption is necessarily justifiable in this situation.
OCR Further Mechanics 2021 November Q1
5 marks Challenging +1.2
1 One end of a light elastic string of natural length 0.6 m and modulus of elasticity 24 N is attached to a fixed point \(O\). The other end is attached to a particle \(P\) of mass 0.4 kg . \(O\) is a vertical distance of 1 m below a horizontal ceiling. \(P\) is held at a point 1.5 m vertically below \(O\) and released from rest (see diagram).
\includegraphics[max width=\textwidth, alt={}, center]{c6445493-9802-46ca-b7eb-7738a831d9ee-2_470_371_593_255} Assuming that there is no obstruction to the motion of \(P\) as it passes \(O\), find the speed of \(P\) when it first hits the ceiling.
OCR Further Mechanics 2021 November Q2
9 marks Standard +0.3
2 A particle \(P\) of mass 2 kg is moving on a large smooth horizontal plane when it collides with a fixed smooth vertical wall. Before the collision its velocity is \(( 5 \mathbf { i } + 16 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) and after the collision its velocity is \(( - 3 \mathbf { i } + \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  1. The impulse imparted on \(P\) by the wall is denoted by INs. Find the following.
    • The magnitude of \(\mathbf { I }\)
    • The angle between I and i
    • Find the loss of kinetic energy of \(P\) as a result of the collision.
OCR Further Mechanics 2021 November Q3
8 marks Moderate -0.3
3 A particle \(P\) of mass \(m\) moves on the \(x\)-axis under the action of a force \(F\) directed along the axis. When the displacement of \(P\) from the origin is \(x\) its velocity is \(v\).
  1. By using the fact that the dimensions of the derivative \(\frac { d v } { d x }\) are the same as those of \(\frac { v } { x }\), verify that the equation \(\mathrm { F } = \mathrm { mv } \frac { \mathrm { dv } } { \mathrm { dx } }\) is dimensionally consistent. It is given that \(\mathrm { v } = \mathrm { km } ^ { - \frac { 1 } { 2 } } \sqrt { \mathrm { a } ^ { 2 } - \mathrm { x } ^ { 2 } }\) where \(a\) and \(k\) are constants.
  2. Explain why \([ a ]\) must be the same as \([ x ]\).
  3. Deduce the dimensions of \(k\).
  4. Find an expression for \(F\) in terms of \(x\) and \(k\).
OCR Further Mechanics 2021 November Q4
8 marks Standard +0.8
4 A hollow cone is fixed with its axis vertical and its vertex downwards. A small sphere \(P\) of mass \(m \mathrm {~kg}\) is moving in a horizontal circle on the inner surface of the cone. An identical sphere \(Q\) rests in equilibrium inside the cone (see diagram).
\includegraphics[max width=\textwidth, alt={}, center]{c6445493-9802-46ca-b7eb-7738a831d9ee-3_586_611_404_246} The following modelling assumptions are made.
  • \(P\) and \(Q\) are modelled as particles.
  • The cone is modelled as smooth.
  • There is no air resistance.
    1. Assuming that \(P\) moves with a constant speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), show that the total mechanical energy of \(P\) is \(\frac { 3 } { 2 } \mathrm { mv } ^ { 2 } \mathrm {~J}\) more than the total mechanical energy of \(Q\).
    2. Explain how the assumption that \(P\) and \(Q\) are both particles has been used.
In practice, \(P\) will not move indefinitely in a perfectly circular path, but will actually follow an approximately spiral path on the inside surface of the cone until eventually it collides with \(Q\).
  • Suggest an improvement that could be made to the model.
  • OCR Further Mechanics 2021 November Q5
    12 marks Standard +0.8
    5 A particle \(P\) of mass 3 kg moves on the \(x\)-axis under the action of a single force acting in the positive \(x\)-direction. At time \(t \mathrm {~s}\), where \(t \geqslant 0\), the displacement of \(P\) is \(x \mathrm {~m}\) and its velocity is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The magnitude of the force acting is inversely proportional to \(( t + 1 ) ^ { 2 }\). Initially \(P\) is at rest at the point where \(x = 1\). When \(t = 1 , v = 2\).
    1. Show that \(\frac { \mathrm { dv } } { \mathrm { dt } } = \frac { \mathrm { k } } { 3 ( \mathrm { t } + 1 ) ^ { 2 } }\) where \(k\) is a constant.
    2. Find an expression for \(v\) in terms of \(t\).
    3. Find an expression for \(x\) in terms of \(t\). As \(t\) increases, \(v\) approaches a limiting value, \(\mathrm { V } _ { \mathrm { T } }\).
    4. Determine how far \(P\) is from its initial position at the instant when \(v\) is \(95 \%\) of \(\mathrm { V } _ { \mathrm { T } }\).
    OCR Further Mechanics 2021 November Q6
    10 marks Standard +0.8
    6 A particle \(P\) of mass 4 kg is attached to one end of a light inextensible string of length 0.8 m . The other end of the string is attached to a fixed point \(O . P\) is at rest vertically below \(O\) when it experiences a horizontal impulse of magnitude 20 Ns . In the subsequent motion the angle the string makes with the downwards vertical through \(O\) is denoted by \(\theta\) (see diagram).
    \includegraphics[max width=\textwidth, alt={}, center]{c6445493-9802-46ca-b7eb-7738a831d9ee-4_387_502_1434_255}
    1. Find the magnitude of the acceleration of \(P\) at the first instant when \(\theta = \frac { 1 } { 3 } \pi\) radians.
    2. Determine the value of \(\theta\) at which the string first becomes slack.
    OCR Further Mechanics 2021 November Q7
    10 marks Challenging +1.8
    7 Two smooth circular discs \(A\) and \(B\) of masses \(m _ { A } \mathrm {~kg}\) and \(m _ { B } \mathrm {~kg}\) respectively are moving on a horizontal plane. At the instant before they collide the velocities of \(A\) and \(B\) are as follows, as shown in the diagram below.
    • The velocity of \(A\) is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(\alpha\) to the line of centres, where \(\tan \alpha = \frac { 4 } { 3 }\).
    • The velocity of \(B\) is \(4 \mathrm {~ms} ^ { - 1 }\) at an angle of \(\frac { 1 } { 3 } \pi\) radians to the line of centres.
      \includegraphics[max width=\textwidth, alt={}, center]{c6445493-9802-46ca-b7eb-7738a831d9ee-5_469_873_548_274}
    The direction of motion of \(B\) after the collision is perpendicular to the line of centres.
    1. Show that \(\frac { 3 } { 2 } \leqslant \frac { m _ { B } } { m _ { A } } \leqslant 4\).
    2. Given that \(\mathrm { m } _ { \mathrm { A } } = 2\) and \(\mathrm { m } _ { \mathrm { B } } = 6\), find the total loss of kinetic energy as a result of the collision.
    OCR Further Mechanics 2021 November Q8
    13 marks Standard +0.8
    8 A rectangular lamina of mass \(M\) has vertices at the origin \(O ( 0,0 ) , A ( 24 a , 0 ) , B ( 24 a , 6 a )\) and \(C ( 0,6 a )\), where \(a\) is a positive constant. A small object \(P\) of mass \(m\) is attached to the lamina at the point ( \(x , y\) ). The centre of mass of the system consisting of the lamina and \(P\) is at the point ( \(\mathrm { x } , \mathrm { y }\) ). \(P\) is modelled as a particle and the lamina is modelled as being uniform.
    1. Show that \(x = \frac { 12 M a + m x } { M + m }\).
    2. Find a corresponding expression for \(\bar { y }\). The lamina, with \(P\) no longer attached, is placed on a horizontal rectangular table, with its sides parallel to the edges of the table, and partly overhanging the edges of the table, as shown in the diagram. The corner of the table is at the point ( \(6 a , 2 a\) ).
      \includegraphics[max width=\textwidth, alt={}, center]{c6445493-9802-46ca-b7eb-7738a831d9ee-6_538_1431_849_246} When \(P\) is placed on the lamina at \(O\), the lamina topples over one of the edges of the table.
    3. Show that \(\mathrm { m } > \frac { 1 } { 2 } \mathrm { M }\). The lamina is now put back on the table in the same position as before. \(P\) is placed at the point \(( 12 a , 6 a )\) on the smooth upper surface of the lamina, and is projected towards \(O\). At a subsequent instant during the motion, \(P\) is at the point (12ak, 6ak) where \(0 < k < 1\).
    4. Assuming that the lamina has not yet toppled, find, in terms of \(M\) and \(m\), the value of \(k\) for which the centre of mass of the system lies on the table edge parallel to \(O C\).
    5. For the case \(\mathrm { m } = \frac { 3 } { 2 } \mathrm { M }\), determine which table edge the lamina topples over.
    OCR Further Mechanics Specimen Q1
    9 marks Standard +0.8
    1 A body, \(P\), of mass 2 kg moves under the action of a single force \(\mathbf { F } \mathrm { N }\). At time \(t \mathrm {~s}\), the velocity of the body is \(\mathbf { v } \mathrm { m } \mathrm { s } ^ { - 1 }\), where $$\mathbf { v } = \left( t ^ { 2 } - 3 \right) \mathbf { i } + \frac { 5 } { 2 t + 1 } \mathbf { j } \text { for } t \geq 2$$
    1. Obtain \(\mathbf { F }\) in terms of \(t\).
    2. Calculate the rate at which the force \(\mathbf { F }\) is working at \(t = 4\).
    3. By considering the change in kinetic energy of \(P\), calculate the work done by the force \(\mathbf { F }\) during the time interval \(2 \leq t \leq 4\).
    OCR Further Mechanics Specimen Q2
    9 marks Standard +0.8
    2 As part of a training exercise an army recruit of mass 75 kg falls a vertical distance of 5 m before landing on a mat of thickness 1.2 m . The army recruit sinks a distance of \(x \mathrm {~m}\) into the mat before instantaneously coming to rest. The mat can be modelled as a spring of natural length 1.2 m and modulus of elasticity 10800 N and the army recruit can be modelled as a particle falling vertically with an initial speed of \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
    1. Show that \(x\) satisfies the equation \(300 x ^ { 2 } - 49 x - 255 = 0\).
    2. Calculate the value of \(x\).
    3. Ignoring the possible effect of air resistance, make
      • one comment on the assumptions made and,
      • suggest a possible refinement to the model.
    OCR Further Mechanics Specimen Q3
    5 marks Standard +0.3
    3 A body, \(Q\), of mass 2 kg moves in a straight line under the action of a single force which acts in the direction of motion of \(Q\). Initially the speed of \(Q\) is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). At time \(t \mathrm {~s}\), the magnitude \(F \mathrm {~N}\) of the force is given by $$F = t ^ { 2 } + 3 \mathrm { e } ^ { t } , \quad 0 \leq t \leq 4$$
    1. Calculate the impulse of the force over the time interval.
    2. Hence find the speed of \(Q\) when \(t = 4\).
    OCR Further Mechanics Specimen Q4
    15 marks Standard +0.8
    4 A light inextensible taut rope, of length 4 m , is attached at one end \(A\) to the centre of the horizontal ceiling of a gym. The other end of the rope \(B\) is being held by a child of mass 35 kg . Initially the child is held at rest with the rope making an angle of \(60 ^ { \circ }\) to the downward vertical and it may be assumed that the child can be modelled as a particle attached to the end of the rope. The child is released at a height 5 m above the horizontal ground.
    1. Show that the speed, \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), of the child when the rope makes an angle \(\theta\) with the downward vertical is given by \(v ^ { 2 } = 4 g ( 2 \cos \theta - 1 )\).
    2. At the instant when \(\theta = 0 ^ { \circ }\), the child lets go of the rope and moves freely under the influence of gravity only. Determine the speed and direction of the child at the moment that the child reaches the ground.
    3. The child returns to the initial position and is released again from rest. Find the value of \(\theta\) when the tension in the rope is three times greater than the tension in the rope at the instant the child is released.
    OCR Further Mechanics Specimen Q5
    11 marks Challenging +1.8
    5 A particle \(P\) of mass \(m \mathrm {~kg}\) is projected vertically upwards through a liquid. Student \(A\) measures \(P\) 's initial speed as \(( 8.5 \pm 0.25 ) \mathrm { m } \mathrm { s } ^ { - 1 }\) and they also record the time for \(P\) to attain its greatest height above the initial point of projection as over 3 seconds.
    In an attempt to model the motion of \(P\) student \(B\) determines that \(t\) seconds after projection the only forces acting on \(P\) are its weight and the resistance from the liquid. Student \(B\) models the resistance from the liquid to be of magnitude \(m v ^ { 2 } - 6 m v\), where \(v\) is the speed of the particle.
    1. (a) Show that \(\frac { \mathrm { d } t } { \mathrm {~d} v } = - \frac { 1 } { ( v - 3 ) ^ { 2 } + 0.8 }\).
      (b) Determine whether student \(B\) 's model is consistent with the time recorded by \(A\) for \(P\) to attain its greatest height. After attaining its greatest height \(P\) now falls through the liquid. Student \(C\) claims that the time taken for \(P\) to achieve a speed of \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) when falling through the liquid is given by $$- \int _ { 0 } ^ { 1 } \frac { 1 } { ( v - 3 ) ^ { 2 } + 0.8 } \mathrm {~d} v$$
    2. Explain why student \(C\) 's claim is incorrect and write down the integral which would give the correct time for \(P\) to achieve a speed of \(1 \mathrm {~ms} ^ { - 1 }\) when falling through the liquid.
    OCR Further Mechanics Specimen Q6
    12 marks Challenging +1.2
    6 Two uniform smooth spheres \(A\) and \(B\) of equal radius are moving on a smooth horizontal surface when they collide. \(A\) has mass 2.5 kg and \(B\) has mass 3 kg . Immediately before the collision \(A\) and \(B\) each has speed \(u \mathrm {~ms} ^ { - 1 }\) and each moves in a direction at an angle \(\theta\) to their line of centres, as indicated in Fig. 1. Immediately after the collision \(A\) has speed \(v _ { 1 } \mathrm {~ms} ^ { - 1 }\) and moves in a direction at an angle \(\alpha\) to the line of centres, and \(B\) has speed \(v _ { 2 } \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and moves in a direction at an angle \(\beta\) to the line of centres as indicated in Fig. 2. The coefficient of restitution between \(A\) and \(B\) is \(e\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cf99660f-6103-47be-99d4-d7f9214e9e91-4_336_814_667_699} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cf99660f-6103-47be-99d4-d7f9214e9e91-4_374_657_1228_767} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure}
    1. Show that \(\tan \beta = \frac { 11 \tan \theta } { 10 e - 1 }\).
    2. Given that after impact sphere \(A\) moves at an angle of \(50 ^ { \circ }\) to the line of centres and \(B\) moves perpendicular to the line of centres, find \(\theta\). \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{cf99660f-6103-47be-99d4-d7f9214e9e91-5_817_848_374_210} \captionsetup{labelformat=empty} \caption{Fig. 3}
      \end{figure} \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{cf99660f-6103-47be-99d4-d7f9214e9e91-5_819_953_376_1062} \captionsetup{labelformat=empty} \caption{Fig. 4}
      \end{figure} The region bounded by the \(x\)-axis, the \(y\)-axis, the line \(x = \ln 32\) and the curve \(y = \mathrm { e } ^ { 0.8 x }\) for \(0 \leq x \leq \ln 32\), is occupied by a uniform lamina (see Fig. 3).
    3. Show that the \(x\)-coordinate of the centre of mass of the lamina is given by \(\frac { 16 } { 3 } \ln 2 - \frac { 5 } { 4 }\).
    4. Calculate the \(y\)-coordinate of the centre of mass of the lamina.
    5. The region bounded by the \(x\)-axis, the line \(x = 16\) and the curve \(y = 1.25 \ln x\) for \(1 \leq x \leq 16\), is occupied by a second uniform lamina (see Fig. 4). By using your answer to part (i) find, to 3 significant figures, the \(x\)-coordinate of the centre of mass of this second lamina. {www.ocr.org.uk}) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
      OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
    OCR Further Discrete 2019 June Q1
    8 marks Standard +0.8
    1 Two graphs are shown below. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{7717b4ca-45ab-4111-9f59-5a3abb04b388-2_396_351_397_246} \captionsetup{labelformat=empty} \caption{Graph G1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{7717b4ca-45ab-4111-9f59-5a3abb04b388-2_394_343_397_932} \captionsetup{labelformat=empty} \caption{Graph G2}
    \end{figure}
      1. Prove that the graphs are isomorphic.
      2. Verify that Euler's formula holds for graph G1.
    1. Describe how it is possible to add 4 arcs to graph G1 to make a non-planar graph with 5 vertices.
    2. Describe how it is possible to add a vertex U and 4 arcs to graph G 2 to make a connected nonplanar graph with 6 vertices.
    OCR Further Discrete 2019 June Q2
    7 marks Standard +0.3
    2 A project is represented by the activity network and cascade chart below. The table showing the number of workers needed for each activity is incomplete. Each activity needs at least 1 worker.
    \includegraphics[max width=\textwidth, alt={}, center]{7717b4ca-45ab-4111-9f59-5a3abb04b388-2_202_565_1605_201}
    \includegraphics[max width=\textwidth, alt={}, center]{7717b4ca-45ab-4111-9f59-5a3abb04b388-2_328_560_1548_820}
    ActivityWorkers
    A2
    BX
    C
    D
    E
    F
    1. Complete the table in the Printed Answer Booklet to show the immediate predecessors for each activity.
    2. Calculate the latest start time for each non-critical activity. The minimum number of workers needed is 5 .
    3. What type of problem (existence, construction, enumeration or optimisation) is the allocation of a number of workers to the activities? There are 8 workers available who can do activities A and B .
      1. Find the number of ways that the workers for activity A can be chosen.
      2. When the workers have been chosen for activity A , find the total number of ways of choosing the workers for activity B for all the different possible values of x , where \(\mathrm { x } \geqslant 1\).
    OCR Further Discrete 2019 June Q3
    9 marks Moderate -0.5
    3 A problem is represented as the initial simplex tableau below.
    \(\mathbf { P }\)\(\mathbf { x }\)\(\mathbf { y }\)\(\mathbf { z }\)\(\mathbf { s }\)\(\mathbf { t }\)RHS
    1- 201000
    01111060
    02340160
    1. Write the problem as a linear programming formulation in the standard algebraic form with no slack variables.
    2. Carry out one iteration of the simplex algorithm.
    3. Show algebraically how each row of the tableau found in part (b) is calculated.
    OCR Further Discrete 2019 June Q4
    12 marks Moderate -0.8
    4 An algorithm must have an input, an output, be deterministic and finite.
    1. Why is a counter sometimes used in an algorithm? A computer takes 0.2 seconds to sort a list of 500 numbers.
    2. How long would you expect the computer to take to sort a list of 5000 numbers? Simon says that he can sort a list of numbers 'just by looking at them'.
    3. Explain to Simon why sorting algorithms are needed.
    4. Demonstrate how quick sort works by using it to sort the following list into increasing order. You should indicate the pivots used and which values are already known to be in their correct position.
      \(\begin{array} { l l l l l } 41 & 17 & 8 & 33 & 29 \end{array}\) For an average case the efficiency of quick sort is O (nlogn), where n is the number of items in the list.
    5. Explain why quick sort is typically quicker than bubble sort and shuttle sort. When the number of comparisons made is used as a measure of the efficiency, the worst case for quick sort is no more efficient than the worst case for bubble sort. An arrangement of the five numbers from part (d) makes up a new list that is to be sorted using the bubble sort or the quick sort.
    6. Without writing out all the passes, determine
      • the worst case list
      • the total number of comparisons for the worst case list
        for each of the algorithms in turn.
    OCR Further Discrete 2019 June Q5
    14 marks Moderate -0.3
    5 A network is represented by the distance matrix below. For this network a direct connection between two vertices is always shorter than an indirect connection.
    ABCDEFGH
    A-130100--250--
    B130--50--170100
    C100---80170-90
    D-50----120-
    E--80--140-120
    F250-170-140---
    G-170-120---90
    H-10090-120-90-
    1. How does the distance matrix show that the arcs are undirected? The shortest distance from A to E is 180 .
    2. Write down the shortest route from A to E .
    3. Use Dijkstra's algorithm on the distance matrix to find the length of the shortest route from \(\mathbf { G }\) to each of the other vertices. The arcs represent roads and the weights represent distances in metres. The total length of all the roads is 1610 metres. Emily and Stephen have set up a company selling ice-creams from a van.
    4. Emily wants to deliver leaflets to the houses along each side of each road. Find the length of the shortest continuous route that Emily can use.
    5. Stephen wants to drive along each road in the ice-cream van.
      1. Determine the length of the shortest route for Stephen if he starts at B.
      2. Stephen wants to use the shortest possible route.
        • Find the length of the shortest possible route.
    6. Write down the start and end vertices of this route.
    OCR Further Discrete 2019 June Q6
    13 marks Standard +0.8
    6 The pay-off matrix for a game between two players, Sumi and Vlad, is shown below. If Sumi plays A and Vlad plays X then Sumi gets X points and Vlad gets 1 point. Sumi
    Vlad
    \cline { 2 - 4 } \multicolumn{1}{c}{}\(X\)\(Y\)\(Z\)
    A\(( x , 1 )\)\(( 4 , - 2 )\)\(( 2,0 )\)
    B\(( 3 , - 1 )\)\(( 6 , - 4 )\)\(( - 1,3 )\)
    You are given that cell ( \(\mathrm { A } , \mathrm { X }\) ) is a Nash Equilibrium solution.
    1. Find the range of possible values of X .
    2. Explain what the statement 'cell (A, X) is a Nash Equilibrium solution' means for each player.
    3. Find a cell where each player gets their maximin pay-off. Suppose, instead, that the game can be converted to a zero-sum game.
    4. Determine the optimal strategy for Sumi for the zero-sum game.
      • Record the pay-offs for Sumi when the game is converted to a zero-sum game.
      • Describe how Sumi should play using this strategy.
    OCR Further Discrete 2019 June Q7
    12 marks Standard +0.3
    7 Sam is making pies.
    There is exactly enough pastry to make 7 large pies or 20 medium pies or 36 small pies, or some mixture of large, medium and small pies. This is represented as a constraint \(180 x + 63 y + 35 z \leqslant 1260\).
    1. Write down what \(\mathrm { X } , \mathrm { Y }\) and Z represent. There is exactly enough filling to make 5 large pies or 12 medium pies or 18 small pies, or some mixture of large, medium and small pies.
    2. Express this as a constraint of the form \(a x + b y + c z \leqslant d\), where \(a , b , c\) and \(d\) are integers. The number of small pies must equal the total number of large and medium pies.
    3. Show that making exactly 9 small pies is inconsistent with the constraints.
    4. Determine the maximum number of large pies that can be made.
      • Your reasoning should be in the form of words, calculations or algebra.
      • You must check that your solution is feasible.
    OCR Further Discrete 2022 June Q1
    6 marks Standard +0.8
    1 Four children, A, B, C and D, discuss how many of the 23 birthday parties held by their classmates they had gone to. Each party was attended by at least one of the four children. The results are shown in the Venn diagram below.
    \includegraphics[max width=\textwidth, alt={}, center]{50697293-6cdc-475f-981f-71a351b0ff5a-2_387_618_589_246}
    1. Construct a complete graph \(\mathrm { K } _ { 4 }\), with vertices representing the four children and arcs weighted to show the number of parties each pair of children went to.
    2. State a piece of information about the number of parties the children went to that is shown in the Venn diagram but is not shown in the graph. A fifth child, E, also went to some of the 23 parties shown in the Venn diagram.
      Every party that E went to was also attended by at least one of \(\mathrm { A } , \mathrm { B } , \mathrm { C }\) and D .
      • A was at 8 of these parties, B at 7, C at 5 and D at 8 .
      • These include 5 parties attended by both A and \(\mathrm { B } , 2\) by both A and \(\mathrm { C } , 3\) by both A and \(\mathrm { D } , 3\) by both B and D and 4 by both C and D .
      • These include 1 party attended by \(\mathrm { A } , \mathrm { B }\) and D and 1 party attended by \(\mathrm { A } , \mathrm { C }\) and D .
      • Use the inclusion-exclusion principle to determine the number of parties that E went to.
    OCR Further Discrete 2022 June Q2
    9 marks Moderate -0.5
    2 The table below shows the activities involved in a project together with the immediate predecessors and the duration of each activity.
    ActivityImmediate predecessorsDuration (minutes)
    A-4
    B-1
    CA2
    DA, B5
    ED1
    FB, C2
    GD, F5
    HE, F4
    1. Model the project using an activity network.
    2. Determine the minimum project completion time.
    3. Calculate the total float for each non-critical activity.