7 Two smooth circular discs \(A\) and \(B\) of masses \(m _ { A } \mathrm {~kg}\) and \(m _ { B } \mathrm {~kg}\) respectively are moving on a horizontal plane. At the instant before they collide the velocities of \(A\) and \(B\) are as follows, as shown in the diagram below.
- The velocity of \(A\) is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(\alpha\) to the line of centres, where \(\tan \alpha = \frac { 4 } { 3 }\).
- The velocity of \(B\) is \(4 \mathrm {~ms} ^ { - 1 }\) at an angle of \(\frac { 1 } { 3 } \pi\) radians to the line of centres.
\includegraphics[max width=\textwidth, alt={}, center]{c6445493-9802-46ca-b7eb-7738a831d9ee-5_469_873_548_274}
The direction of motion of \(B\) after the collision is perpendicular to the line of centres.
- Show that \(\frac { 3 } { 2 } \leqslant \frac { m _ { B } } { m _ { A } } \leqslant 4\).
- Given that \(\mathrm { m } _ { \mathrm { A } } = 2\) and \(\mathrm { m } _ { \mathrm { B } } = 6\), find the total loss of kinetic energy as a result of the collision.