OCR Further Discrete 2019 June — Question 6

Exam BoardOCR
ModuleFurther Discrete (Further Discrete)
Year2019
SessionJune
TopicGroups

6 The pay-off matrix for a game between two players, Sumi and Vlad, is shown below. If Sumi plays A and Vlad plays X then Sumi gets X points and Vlad gets 1 point. Sumi
Vlad
\cline { 2 - 4 } \multicolumn{1}{c}{}\(X\)\(Y\)\(Z\)
A\(( x , 1 )\)\(( 4 , - 2 )\)\(( 2,0 )\)
B\(( 3 , - 1 )\)\(( 6 , - 4 )\)\(( - 1,3 )\)
You are given that cell ( \(\mathrm { A } , \mathrm { X }\) ) is a Nash Equilibrium solution.
  1. Find the range of possible values of X .
  2. Explain what the statement 'cell (A, X) is a Nash Equilibrium solution' means for each player.
  3. Find a cell where each player gets their maximin pay-off. Suppose, instead, that the game can be converted to a zero-sum game.
  4. Determine the optimal strategy for Sumi for the zero-sum game.
    • Record the pay-offs for Sumi when the game is converted to a zero-sum game.
    • Describe how Sumi should play using this strategy.