Questions — OCR (4628 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR Further Mechanics AS 2019 June Q2
7 marks Standard +0.3
2 A particle \(A\) of mass 3.6 kg is attached by a light inextensible string to a particle \(B\) of mass 2.4 kg . \(A\) and \(B\) are initially at rest, with the string slack, on a smooth horizontal surface. \(A\) is projected directly away from \(B\) with a speed of \(7.2 \mathrm {~ms} ^ { - 1 }\).
  1. Calculate the speed of \(A\) after the string becomes taut.
  2. Find the impulse exerted on \(A\) at the instant that the string becomes taut.
  3. Find the loss in kinetic energy as a result of the string becoming taut.
OCR Further Mechanics AS 2019 June Q3
11 marks Standard +0.3
3 A car of mass 1500 kg has an engine with maximum power 60 kW . When the car is travelling at \(10 \mathrm {~ms} ^ { - 1 }\) along a straight horizontal road using maximum power, its acceleration is \(3.3 \mathrm {~ms} ^ { - 2 }\). In an initial model of the motion of the car it is assumed that the resistance to motion is constant.
  1. Using this initial model, find the greatest possible steady speed of the car along the road. In a refined model the resistance to motion is assumed to be proportional to the speed of the car.
  2. Using this refined model, find the greatest possible steady speed of the car along the road. The greatest possible steady speed of the car on the road is measured and found to be \(21.6 \mathrm {~ms} ^ { - 1 }\).
  3. Explain what this value means about the models used in parts (a) and (b).
OCR Further Mechanics AS 2019 June Q4
11 marks Moderate -0.5
4 A student is studying the speed of sound, \(u\), in a gas under different conditions. He assumes that \(u\) depends on the pressure, \(p\), of the gas, the density, \(\rho\), of the gas and the wavelength, \(\lambda\), of the sound in the relationship \(u = k p ^ { \alpha } \rho ^ { \beta } \lambda ^ { \gamma }\), where \(k\) is a dimensionless constant. (The wavelength of a sound is the distance between successive peaks in the sound wave.)
  1. Use the fact that density is mass per unit volume to find \([ \rho ]\).
  2. Given that the units of \(p\) are \(\mathrm { Nm } ^ { - 2 }\), determine the values of \(\alpha , \beta\) and \(\gamma\).
  3. Comment on what the value of \(\gamma\) means about how fast sounds of different wavelengths travel through the gas. The student carries out two experiments, \(A\) and \(B\), to measure \(u\). Only the density of the gas varies between the experiments, all other conditions being unchanged. He finds that the value of \(u\) in experiment \(B\) is double the value in experiment \(A\).
  4. By what factor has the density of the gas in experiment \(A\) been multiplied to give the density of the gas in experiment \(B\) ? \includegraphics[max width=\textwidth, alt={}, center]{74bada9e-60cf-4ed4-abd0-4be155b7cf81-4_659_401_269_251} As shown in the diagram, \(A B\) is a long thin rod which is fixed vertically with \(A\) above \(B\). One end of a light inextensible string of length 1 m is attached to \(A\) and the other end is attached to a particle \(P\) of mass \(m _ { 1 } \mathrm {~kg}\). One end of another light inextensible string of length 1 m is also attached to \(P\). Its other end is attached to a small smooth ring \(R\), of mass \(m _ { 2 } \mathrm {~kg}\), which is free to move on \(A B\). Initially, \(P\) moves in a horizontal circle of radius 0.6 m with constant angular velocity \(\omega _ { \text {rads } } { } ^ { - 1 }\). The magnitude of the tension in string \(A P\) is denoted by \(T _ { 1 } \mathrm {~N}\) while that in string \(P R\) is denoted by \(T _ { 2 } \mathrm {~N}\).
OCR Further Mechanics AS 2019 June Q6
11 marks Challenging +1.2
6 Particles \(A\) of mass \(2 m\) and \(B\) of mass \(m\) are on a smooth horizontal floor. \(A\) is moving with speed \(u\) directly towards a vertical wall, and \(B\) is at rest between \(A\) and the wall (see diagram). \includegraphics[max width=\textwidth, alt={}, center]{74bada9e-60cf-4ed4-abd0-4be155b7cf81-5_224_828_354_244} A collides directly with \(B\). The coefficient of restitution in this collision is \(\frac { 1 } { 2 }\). \(B\) then collides with the wall, rebounds, and collides with \(A\) for a second time.
  1. Show that the speed of \(B\) after its second collision with \(A\) is \(\frac { 1 } { 2 } u\). The first collision between \(A\) and \(B\) occurs at a distance \(d\) from the wall. The second collision between \(A\) and \(B\) occurs at a distance \(\frac { 1 } { 5 } d\) from the wall.
  2. Find the coefficient of restitution for the collision between \(B\) and the wall.
OCR Further Mechanics AS 2022 June Q1
8 marks Moderate -0.3
1 Two stones, A and B , are sliding along the same straight line on a horizontal sheet of ice. Stone A, of mass 50 kg , is moving with a constant velocity of \(2.1 \mathrm {~ms} ^ { - 1 }\) towards stone B. Stone B, of mass 70 kg , is moving with a constant velocity of \(0.8 \mathrm {~ms} ^ { - 1 }\) towards stone A. A and B collide directly. Immediately after their collision stone A's velocity is \(0.35 \mathrm {~ms} ^ { - 1 }\) in the same direction as its velocity before the collision.
  1. Find the speed of stone B immediately after the collision.
  2. Find the coefficient of restitution for the collision.
  3. Find the total loss of kinetic energy caused by the collision.
  4. Explain whether the collision was perfectly elastic.
OCR Further Mechanics AS 2022 June Q2
7 marks Standard +0.3
2 A hockey puck of mass 0.2 kg is sliding down a rough slope which is inclined at \(10 ^ { \circ }\) to the horizontal. At the instant that its velocity is \(14 \mathrm {~ms} ^ { - 1 }\) directly down the slope it is hit by a hockey stick. Immediately after it is hit its velocity is \(24 \mathrm {~ms} ^ { - 1 }\) directly up the slope.
  1. Find the magnitude of the impulse exerted by the hockey stick on the puck. After it has been hit, the puck first comes to instantaneous rest when it has travelled 15 m up the slope. While the puck is moving up the slope, the resistance to its motion has constant magnitude \(R \mathrm {~N}\).
  2. Use an energy method to determine the value of \(R\).
OCR Further Mechanics AS 2022 June Q3
5 marks Standard +0.3
3 A smooth wire is shaped into a circle of radius 4.2 m which is fixed in a vertical plane with its centre at a point \(O\). A small bead \(B\) is threaded onto the wire. \(B\) is held so that \(O B\) makes an angle of \(\frac { 1 } { 3 } \pi\) radians with the downwards vertical through \(O\). \(B\) is projected downwards along the wire with initial speed \(u \mathrm {~ms} ^ { - 1 }\) (see diagram). In its subsequent motion \(B\) describes complete circles about \(O\). \includegraphics[max width=\textwidth, alt={}, center]{98053e88-1aec-4b0d-ae5f-ece4ad340266-3_493_665_561_242} Given that the lowest speed of \(B\) in its motion is \(4 \mathrm {~ms} ^ { - 1 }\) determine the value of \(u\).
OCR Further Mechanics AS 2022 June Q4
5 marks Standard +0.3
4 A cyclist is riding a bicycle along a straight road which is inclined at an angle of \(4 ^ { \circ }\) to the horizontal. The cyclist is working at a constant rate of 250 W . The combined mass of the cyclist and bicycle is 80 kg and the resistance to their motion is a constant 70 N . Determine the maximum constant speed at which the cyclist can ride the bicycle
  • up the hill, and
  • down the hill.
OCR Further Mechanics AS 2022 June Q5
4 marks Standard +0.3
5 One end of a light inextensible string of length 3.5 m is attached to a fixed point \(O\) on a smooth horizontal plane. The other end of the string is attached to a particle \(P\) of mass \(0.45 \mathrm {~kg} . P\) moves with constant speed in a circular path on the plane with the string taut. The string will break if the tension in it exceeds 70 N . Determine the minimum possible time in which \(P\) can describe a complete circle about \(O\).
OCR Further Mechanics AS 2022 June Q6
10 marks Standard +0.8
6 A particle moves in a straight line with constant acceleration \(a\). Its initial velocity is \(u\) and at time \(t\) its velocity is \(v\). It is assumed that \(v\) depends only on \(u , a\) and \(t\).
  1. Assuming that this dependency is of the form \(\mathrm { u } ^ { \alpha } \mathrm { a } ^ { \beta } \mathrm { t } ^ { \gamma }\), use dimensional analysis to find \(\alpha\) and \(\gamma\) in terms of \(\beta\).
  2. By noting that the graph of \(v\) against \(t\) must be a straight line, determine the possible values of \(\beta\). You may assume that the units of the given quantities are the corresponding SI units.
  3. By considering \(v\) when \(t = 0\) seconds and when \(t = 1\) second, derive the equation of motion \(\mathrm { v } = \mathrm { u } + \mathrm { at }\), explaining your reasoning.
OCR Further Mechanics AS 2022 June Q7
12 marks Challenging +1.2
7 Two particles, \(P\) and \(Q\), are on a smooth horizontal floor. \(P\), of mass 1 kg , is moving with speed \(1.79 \mathrm {~ms} ^ { - 1 }\) directly towards a vertical wall. \(Q\), of mass 2.74 kg , is between \(P\) and the wall, moving directly towards \(P\) with speed \(0.08 \mathrm {~ms} ^ { - 1 }\) (see diagram). \includegraphics[max width=\textwidth, alt={}, center]{98053e88-1aec-4b0d-ae5f-ece4ad340266-4_232_830_1370_246} \(P\) and \(Q\) collide directly and the coefficient of restitution for this collision is denoted by \(e\).
  1. Show that after this collision the speed of \(Q\) is given by \(0.42 + 0.5 e \mathrm {~ms} ^ { - 1 }\). After this collision, \(Q\) then goes on to collide directly with the wall. The coefficient of restitution for the collision between \(Q\) and the wall is also \(e\). There is then no subsequent collision between \(P\) and \(Q\).
  2. Determine the range of possible values of \(e\).
OCR Further Mechanics AS 2022 June Q8
9 marks Standard +0.8
8 As part of an industrial process a single pump causes the intake of a liquid chemical to the bottom end of a tube, draws it up the tube and then discharges it through a nozzle at the top end of the tube. The tube is straight and narrow, 35 m long and inclined at an angle of \(26 ^ { \circ }\) to the horizontal. The chemical arrives at the intake at the bottom end of the tube with a speed of \(6.2 \mathrm {~ms} ^ { - 1 }\). At the top end of the tube the chemical is discharged horizontally with a speed of \(14.3 \mathrm {~ms} ^ { - 1 }\) (see diagram). In total, the pump discharges 1500 kg of chemical through the nozzle each hour. \includegraphics[max width=\textwidth, alt={}, center]{98053e88-1aec-4b0d-ae5f-ece4ad340266-5_405_1175_685_242} In order to model the changes to the mechanical energy of the chemical during the entire process of intake, drawing and discharge, the following modelling assumptions are made.
  • At any instant the total resistance to the motion of all the liquid in the tube is 40 N .
  • All other resistances to motion are ignored.
  • The liquid in the tube moves at a constant speed of \(6.2 \mathrm {~ms} ^ { - 1 }\).
    1. State one other modelling assumption which is required to model the changes to the mechanical energy of the liquid with the given information.
    2. Determine the power at which the pump is working, according to the model.
When the power at which the pump is working is measured it is in fact found to be 450 W .
    1. Find the difference between the total amount of energy output by the pump each hour and the total amount of mechanical energy gained by the chemical each hour.
    2. Give one reason why the model underestimates the power of the engine.
  • OCR Further Mechanics AS 2023 June Q1
    4 marks Standard +0.3
    1 Two particles \(A\), of mass \(m \mathrm {~kg}\), and \(B\), of mass \(3 m \mathrm {~kg}\), are connected by a light inextensible string and placed together at rest on a smooth horizontal surface with the string slack. \(A\) is projected along the surface, directly away from \(B\), with a speed of \(2.4 \mathrm {~ms} ^ { - 1 }\).
    1. Find the speed of \(B\) immediately after the string becomes taut.
    2. Find, in terms of \(m\), the magnitude of the impulse exerted on \(B\) as a result of the string becoming taut.
    OCR Further Mechanics AS 2023 June Q2
    5 marks Standard +0.3
    2 \includegraphics[max width=\textwidth, alt={}, center]{b190b8c9-75b0-4ede-913f-cdecdb58180f-2_337_579_842_246} A small body \(P\) of mass 3 kg is at rest at the lowest point of the inside of a smooth hemispherical shell of radius 3.2 m and centre \(O\). \(P\) is projected horizontally with a speed of \(u \mathrm {~ms} ^ { - 1 }\). When \(P\) first comes to instantaneous rest \(O P\) makes an angle of \(60 ^ { \circ }\) with the downward vertical through \(O\).
    1. Find the value of \(u\).
    2. State one assumption made in modelling the motion of \(P\).
    OCR Further Mechanics AS 2023 June Q3
    10 marks Standard +0.3
    3 A crate of mass 45 kg is sliding with a speed of \(0.8 \mathrm {~ms} ^ { - 1 }\) in a straight line across a smooth horizontal floor. One end of a light inextensible rope is attached to the crate. At a certain instant a builder takes the other end of the rope and starts to pull, applying a constant force of 80 N for 5 seconds. While the builder is pulling the crate, the rope makes a constant angle of \(40 ^ { \circ }\) above the horizontal. Both the rope and the velocity of the crate lie in the same vertical plane (see diagram). \includegraphics[max width=\textwidth, alt={}, center]{b190b8c9-75b0-4ede-913f-cdecdb58180f-3_250_817_605_246} It may be assumed that there is no resistance to the motion of the crate.
    1. Determine the work done by the builder in pulling the crate.
      1. Find the kinetic energy of the crate at the instant when the builder stops pulling the crate.
      2. Explain why the answers to part (a) and part (b)(i) are not equal.
    2. Find the average power developed by the builder in pulling the crate.
    3. Calculate the total impulse exerted on the crate by the builder.
    OCR Further Mechanics AS 2023 June Q4
    7 marks Standard +0.3
    4 A rower is rowing a boat in a straight line across a lake. The combined mass of the rower, boat and oars is 240 kg . The maximum power that the rower can generate is 450 W . In a model of the motion of the boat it is assumed that the total resistance to the motion of the boat is 150 N at any instant when the boat is in motion.
    1. Find the maximum possible acceleration of the boat, according to the model, at an instant when its speed is \(0.5 \mathrm {~ms} ^ { - 1 }\). At one stage in its motion the boat is travelling at a constant speed and the rower is generating power at an average rate of 210 W , which is assumed to be constant. The boat passes a pole and then, after travelling 350 m , a second pole.
    2. Determine how long it takes, according to the model, for the boat to travel between the two poles.
    3. State a reason why the assumption that the rower's generated power is constant may be unrealistic.
    OCR Further Mechanics AS 2023 June Q5
    14 marks Standard +0.3
    5 Two identical spheres, \(A\) and \(B\), each of mass 4 kg , are moving directly towards each other along the same straight line on a smooth horizontal surface until they collide. Before they collide, the speeds of \(A\) and \(B\) are \(5 \mathrm {~ms} ^ { - 1 }\) and \(3 \mathrm {~ms} ^ { - 1 }\) respectively. Immediately after they collide, the speed of \(A\) is \(2 \mathrm {~ms} ^ { - 1 }\) and its direction of motion has been reversed.
      1. Determine the velocity of \(B\) immediately after \(A\) and \(B\) collide.
      2. Show that the coefficient of restitution between \(A\) and \(B\) is \(\frac { 3 } { 4 }\).
      3. Calculate the total loss of kinetic energy due to this collision. Sphere \(B\) goes on to strike a fixed wall directly. As a result of this collision \(B\) moves along the same straight line with a speed of \(4 \mathrm {~ms} ^ { - 1 }\).
    1. Find the coefficient of restitution between \(B\) and the wall, stating whether the collision between \(B\) and the wall is perfectly elastic.
    2. Determine the magnitude of the impulse that \(B\) exerts on \(A\) the next time that they collide.
    OCR Further Mechanics AS 2023 June Q6
    10 marks Moderate -0.8
    6 The physical quantity pressure, denoted by \(P\), can be calculated using the formula \(P = \frac { F } { A }\) where \(F\) is a force and \(A\) is an area.
    1. Find the dimensions of \(P\). An object of mass \(m\) is moving on a smooth horizontal surface subject to a system of forces which begin to act at time \(t = 0\). The initial velocity of the object is \(u\) and its velocity and acceleration at time \(t\) are denoted by \(v\) and \(a\) respectively. The object exerts a pressure \(P\) on the surface. The total work done by the forces is denoted by \(W\). A Mathematics class suggests three formulae to model the quantity \(W\).
      The first suggested formula is \(W = \frac { 1 } { 2 } m v ^ { 2 } - \frac { 1 } { 2 } m u ^ { 2 } + m P\).
    2. Use dimensional analysis to show that this formula cannot be correct. The second suggested formula is \(W = k u ^ { \alpha } v ^ { \beta } t ^ { \gamma }\) where \(k\) is a dimensionless constant.
    3. Use dimensional analysis to show that this formula cannot be correct for any values of \(\alpha , \beta\) and \(\gamma\). The third suggested formula is \(W = k u ^ { \alpha } a ^ { \beta } m ^ { \gamma } t ^ { \delta }\) where \(k\) is a dimensionless constant.
      1. Explain why it is not possible to use dimensional analysis to determine the values of \(\alpha\), \(\beta , \gamma\) and \(\delta\) for the third suggested formula.
      2. Given that \(\alpha = 3\), use dimensional analysis to determine the values of \(\beta , \gamma\) and \(\delta\) for the third suggested formula.
      3. By considering what the formula predicts for large values of \(t\), explain why the formula derived in part (d)(ii) is likely to be incorrect.
    OCR Further Mechanics AS 2023 June Q7
    10 marks Challenging +1.2
    7 Two identical light, inextensible strings \(S _ { 1 }\) and \(S _ { 2 }\) are each of length 5 m . Two identical particles \(P\) and \(Q\) are each of mass 1.5 kg . One end of \(S _ { 1 }\) is attached to \(P\). The other end of \(S _ { 1 }\) is attached to a fixed point \(A\) on a smooth horizontal plane. \(P\) moves with constant speed in a horizontal circular path with \(A\) as its centre (see Fig. 1). One end of \(S _ { 2 }\) is attached to \(Q\). The other end of \(S _ { 2 }\) is attached to a fixed point \(B\). \(Q\) moves with constant speed in a horizontal circular path around a point \(O\) which is vertically below \(B\). At any instant, \(B Q\) makes an angle of \(\theta\) with the downward vertical through \(B\) (see Fig. 2). \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Fig. 1} \includegraphics[alt={},max width=\textwidth]{b190b8c9-75b0-4ede-913f-cdecdb58180f-5_275_655_1082_246}
    \end{figure} \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Fig. 2} \includegraphics[alt={},max width=\textwidth]{b190b8c9-75b0-4ede-913f-cdecdb58180f-5_471_469_932_1151}
    \end{figure}
    1. Given that the angular speed of \(P\) is the same as the angular speed of \(Q\), show that the tensions in \(S _ { 1 }\) and \(S _ { 2 }\) have the same magnitude.
    2. You are given instead that the kinetic energy of \(P\) is 39.2 J and that this is the same as the kinetic energy of \(Q\). Determine the difference between the times taken by \(P\) and \(Q\) to complete one revolution. Give your answer in an exact form.
    OCR Further Mechanics AS 2024 June Q1
    6 marks Moderate -0.8
    1 A particle \(P\) of mass 2.5 kg is moving with a constant speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a straight line on a smooth horizontal plane when it collides directly with a fixed vertical wall. After the collision \(P\) moves away from the wall with a speed of \(2.8 \mathrm {~ms} ^ { - 1 }\).
    1. Calculate the coefficient of restitution between \(P\) and the wall.
    2. Find the magnitude and state the direction of the impulse exerted on \(P\) by the wall.
    3. State the magnitude and direction of the impulse exerted on the wall by \(P\).
    OCR Further Mechanics AS 2024 June Q2
    8 marks Moderate -0.8
    2 A particle \(P\) of mass 0.4 kg is attached to one end of a light inextensible string of length 1.8 m . The other end of the string is attached to a fixed point, \(O\), on a smooth horizontal plane. Initially, \(P\) is moving with a constant speed of \(12 \mathrm {~ms} ^ { - 1 }\) in a horizontal circle with \(O\) as its centre.
      1. Find the magnitude of the acceleration of \(P\).
      2. State the direction of the acceleration of \(P\). A force is now applied to \(P\) in such a way that its angular velocity increases. At the instant that the angular velocity reaches \(8 \mathrm { rad } \mathrm { s } ^ { - 1 }\), the string breaks.
      1. Find the speed with which \(P\) is moving at the instant that the string breaks.
      2. Find the tension in the string at the instant that the string breaks. After the string has broken \(P\) starts to move directly up a smooth slope which is fixed to the plane and inclined at an angle \(\theta ^ { \circ }\) above the horizontal. Particle \(P\) moves a distance of 20 m up the slope before coming to instantaneous rest.
    1. Use an energy method to determine the value of \(\theta\).
    OCR Further Mechanics AS 2024 June Q3
    8 marks Standard +0.3
    3 A small object \(P\) of mass \(m\) is suspended from a fixed point by a light inextensible string of length l. When \(P\) is displaced and released in a certain way, it oscillates in a vertical plane. The time taken for one complete oscillation is called the period and is denoted by \(\tau\). A student is carrying out experiments with \(P\) and suggests the following formula to model the value of \(\tau\). \(\tau = \mathrm { cg } \mathrm { a } ^ { \mathrm { a } } \mathrm { l } _ { \mathrm { m } } { } ^ { \gamma }\) in which
    • \(g\) is the acceleration due to gravity,
    • \(C\) is a dimensionless constant.
      1. Use dimensional analysis to determine the values of the constants \(\alpha , \beta\) and \(\gamma\).
        1. Determine the effect on the period, according to the model, if the length of the string is then multiplied by 4, all other conditions being unchanged.
        2. Determine the effect on the period, according to the model, if instead the mass of the object is multiplied by 4, all other conditions being unchanged.
    OCR Further Mechanics AS 2024 June Q4
    6 marks Standard +0.3
    4 A particle \(B\) of mass 5 kg is at rest at the bottom of a slope which is angled at \(\sin ^ { - 1 } 0.2\) above the horizontal. A constant force \(D\) initially acts directly up the slope on \(B\). The total resistance to the motion of \(B\) is modelled as being a constant 12 N .
    At the instant that \(D\) stops acting, the speed of \(B\) is \(18 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(B\) has moved 90 m up the slope.
    Determine the average power of \(D\) over the time that \(D\) has been acting on \(B\).
    OCR Further Mechanics AS 2024 June Q5
    14 marks Challenging +1.2
    5 Two particles, \(A\) of mass \(m _ { A } \mathrm {~kg}\) and \(B\) of mass 5 kg , are moving directly towards each other on a smooth horizontal floor. Before they collide they have speeds \(\mathrm { u } _ { \mathrm { A } } \mathrm { m } \mathrm { s } ^ { - 1 }\) and \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively. Immediately after they collide the direction of motion of each particle has been reversed and \(A\) and \(B\) have speeds \(3.25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(0.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively (see diagram). The coefficient of restitution between \(A\) and \(B\) is 0.75 . Before: \includegraphics[max width=\textwidth, alt={}, center]{d2156252-71f2-4084-89a2-4d246583eb65-4_218_711_552_283} After: \includegraphics[max width=\textwidth, alt={}, center]{d2156252-71f2-4084-89a2-4d246583eb65-4_218_707_552_1078}
    1. Determine the value of \(m _ { A }\) and the value of \(u _ { A }\).
      [0pt] [5]
    2. Show that approximately \(41 \%\) of the kinetic energy of the system is lost in this collision. After the collision between \(A\) and \(B\), \(B\) goes on to collide directly with a third particle \(C\) of mass 3 kg which is travelling towards \(B\) with a speed of \(5.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The coefficient of restitution between \(B\) and \(C\) is denoted by \(e\).
    3. Given that, after \(B\) and \(C\) collide, there are no further collisions between \(A , B\) and \(C\) determine the range of possible values of \(e\).
    OCR Further Mechanics AS 2024 June Q6
    7 marks Standard +0.3
    6 A motorbike and its rider, together denoted by \(M\), have a combined mass of 360 kg . The resistive force experienced by \(M\) when it is in motion is modelled as being proportional to the speed it is moving at. All motion of \(M\) is on a straight horizontal road. It is found that with the engine of the motorbike working at a rate of 12 kW , the maximum constant speed that \(M\) can move at is \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Determine the speed of \(M\) such that with the engine working at a rate of 12 kW the acceleration of \(M\) is \(1.5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).